Аутотрансплантация Т-лимфоцитов как инструмент для антиген-специфической иммунотерапии онкологических заболеваний


https://doi.org/10.15825/1995-1191-2018-3-95-104

Полный текст:


Аннотация

Аутотрансплантация клеток иммунной системы с целью вызвать реакцию иммунологического отторжения опухоли может оказаться востребованным инструментом в руках врачей. Несмотря  на невысокую эффективность, продемонстрированную в прошлом, активное развитие  биомедицинских клеточных технологий и генной инженерии привело к значительному  улучшению результатов, получаемых при клинической апробации этого подхода. Наибольших  успехов удалось добиться в области адоптивной иммунотерапии с использованием Т-лимфоцитов,  специфичных к опухолевым антигенам. В данном обзоре описывается клинический опыт  применения различных вариантов антиген-специфической адоптивной иммунотерапии опухолей,  включая использование опухоль-инфильтрирующих T-лимфоцитов, T-лимфоцитов с перенаправленными трансгенными антигенраспознающими рецепторами, в том числе химерными.  В статье также анализируются возможности и ограничения этих биомедицинских технологий.


Об авторах

А. Ю. Лупатов
ФГБНУ «НИИ биомедицинской химии имени В.Н. Ореховича»
Россия

Адрес: 119121, Москва, ул. Погодинская, д. 10, кор. 8. Тел. (916) 324-10-20



П. А. Каралкин
МНИОИ имени П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России
Россия


А. А. Бойко
Институт биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова РАН
Россия


К. Н. Ярыгин
ФГБНУ «НИИ биомедицинской химии имени В.Н. Ореховича»
Россия


Список литературы

1. Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J. Urol. 2008; 179 (1): 53–56. DOI: 10.1016/j.juro.2007.08.122.

2. Morano WF, Aggarwal A, Love P, Richard SD, Esquivel J, Bowne WB. Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther. 2016; 23 (11): 373–381. DOI: 10.1038/cgt.2016.49.

3. Basombrio MA, Prehn RT. Studies on the basis of diversity and time of appearance of chemically-induced tumors. Nat. Cancer Inst. Monogr. 1972; 35: 117–124.

4. Лупатов АЮ, Брондз БД. Образование специфических противоопухолевых цитотоксических Т-лимфоцитов в монокультуре. Бюллетень экспериментальной биологии и медицины. 1992; 2: 184–186. Lupatov AIu, Brondz BD. Formation of specific antitumor cytotoxic T-lymphocytes in monoculture. Biull. Eksp. Biol. Med. 1992; 113 (2): 184–186. [In Russ, English abstract].

5. Zinkernagel RM, Doherty PC. MHC-restricted cytotoxic T-cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv. Immunol. 1979; 27: 51–177.

6. Arnold B. Levels of peripheral T-cell tolerance. Transpl. Immunol. 2002; 10 (2–3): 109–114.

7. Тюряева ИИ. Опухолевые антигены. Цитология. 2008; 50 (3): 189–209. Tyuryaeva II. Tumor antigens. Tsitologiya. 2008; 50 (3): 189–209. [In Russ, English abstract].

8. Neves H, Kwok HF. Recent advances in the field of anticancer immunotherapy. BBA Clin. 2015; 3: 280–288. DOI: 10.1016/j.bbacli.2015.04.001.

9. Zych AO, Bajor M, Zagozdzon R. Application of genome editing techniques in immunology. Arch. Immunol. Ther. Exp. (Warsz). 2018. [Epub ahead of print]. DOI: 10.1007/s00005-018-0504-z.

10. Zhang Y, Mu W, Wang H. Gene editing in T-cell therapy. J. Genet. Genomics. 2017; 44 (9): 415–422. DOI: 10.1016/j.jgg.2017.09.002.

11. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers of MHC restriction of T-cell receptors. Nat. Rev. Immunol. 2018. [Epub ahead of print]. DOI: 10.1038/s41577-018-0007-5.

12. Berinstein NL. Enhancing cancer vaccines with immunomodulators. Vaccine. 2007; 25 Suppl. 2: B72–88. DOI: 10.1016/j.vaccine.2007.06.043.

13. Yu TW, Chueh HY, Tsai CC, Lin CT, Qiu JT. Novel GMCSF-based vaccines: one small step in GM-CSF gene optimization, one giant leap for human vaccines. Hum. Vaccin. Immunother. 2016; 12 (12): 3020–3028. DOI: 10.1080/21645515.2016.1221551.

14. Cai W, Kerner ZJ, Hong H, Sun J. Targeted cancer therapy with Tumor Necrosis Factor-Alpha. Biochem. Insights. 2008; 2008: 15–21.

15. Dustin ML. The immunological synapse. Cancer Immunol. Res. 2014; 2 (11): 1023– 1033. DOI: 10.1158/2326-6066.CIR-14-0161.

16. Mao Y, Qu Q, Chen X, Huang O, Wu J, Shen K. The prognostic value of tumor- infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis. PLoS One. 2016; 11 (4): e0152500. DOI: 10.1371/journal.pone.0152500.

17. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer research. 2012; 72: 1070–1080. DOI: 10.1158/0008-5472.CAN-11-3218.

18. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006; 313: 1960–1964. DOI: 10.1126/science.1129139.

19. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 1988; 319 (25): 1676– 1680.

20. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T- cell transfer immunotherapy. Clin. Cancer Res. 2011; 17 (13): 4550–4557. DOI: 10.1158/1078-0432.CCR-11-0116.

21. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 2010; 16 (9): 2646–2655. DOI: 10.1158/1078-0432.CCR-10-0041.

22. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 2012; 18 (24): 6758–6770. DOI: 10.1158/1078-0432.CCR-12-1177.

23. Goff SL, Dudley ME, Citrin DE, Somerville RP, Wunderlich JR, Danforth DN et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J. Clin. Oncol. 2016; 34 (20): 2389–2397. DOI: 10.1200/JCO.2016.66.7220.

24. Koch M, Beckhove P, Op den Winkel J, Autenrieth D, Wagner P, Nummer D et al. Tumor infiltrating T-lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ. Ann. Surg. 2006; 244 (6): 986–992; discussion 992-3. DOI: 10.1097/01.sla.0000247058.43243.7b.

25. Baldan V, Griffiths R, Hawkins RE, Gilham DE. Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br. J. Cancer. 2015; 112 (9): 1510–1518. DOI: 10.1038/bjc.2015.96.

26. Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J et al. Identification of a tumorreactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology. 2016; 5 (12): e1240859. DOI: 10.1080/2162402X.2016.1240859.

27. Jiang SS, Tang Y, Zhang YJ, Weng DS, Zhou ZG, Pan K et al. A phase I clinical trial utilizing autologous tumorinfiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget. 2015; 6 (38): 41339– 41349. DOI: 10.18632/oncotarget.5463.

28. Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T-cells. J. Clin. Oncol. 2015; 33 (14): 1543– 1550. DOI: 10.1200/JCO.2014.58.9093.

29. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME et al. Cancer immunotherapy based on mutationspecific CD4+ T-cells in a patient with epithelial cancer. Science. 2014; 344 (6184): 641–645. DOI: 10.1126/science.1251102.

30. Ghanadan A, Ehsani A-H, Farahmand A-M, Mirzae M. Tumor infiltrating lymphocytes in different stages of malignant melanoma and correlation with tumor stage and other prognostic factors: a retrospective multicenter study. Middle East Journal of Cancer. 2017; 8 (4): 207–212.

31. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006; 314 (5796): 126–129. DOI: 10.1126/science.1129003.

32. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009; 114 (3): 535–546. DOI: 10.1182/blood-2009-03-211714.

33. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA et al. T-cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 2011; 19 (3): 620–626. DOI: 10.1038/mt.2010.272.

34. Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-mediated TCR replacement generates superior anticancer transgenic T-cells. Blood. 2018; 131 (3): 311–322. DOI: 10.1182/blood-2017-05-787598.

35. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M et al. Melanocyte destruction after antigenspecific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J. Exp. Med. 2000; 192 (11): 1637–1644.

36. van den Berg JH, Gomez-Eerland R, van de Wiel B, Hulshoff L, van den Broek D, Bins A et al. Case report of a fatal serious adverse event upon administration of T-cells transduced with a MART-1-specific T-cell receptor. Mol. Ther. 2015; 23 (9): 1541–1550. DOI: 10.1038/mt.2015.60.

37. Михайлова ИН, Ковалевский ДА, Бибилашвили РШ. Раково-тестикулярные антигены как потенциальные мишени для вакцинотерапии опухолей. Российский биотерапевтический журнал. 2010; 4 (9): 17–26. Mikhaylova IN, Kovalevsky DA, Beabealashvilli RSh. Cancer/testis antigens as potential targets for vaccinotherapy of tumours. [In Russ, English abstract].

38. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 2011; 29 (7): 917–924. DOI: 10.1200/JCO.2010.32.2537.

39. Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T-cells for cancer immunotherapy. Cancer Immunol. Immunother. 2016; 65 (6): 631–649. DOI: 10.1007/s00262-016-1842-5.

40. Павлова АА, Масчан МА, Пономарев ВБ. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017; 12 (1): 17–32. DOI: 10.17650/1818- 8346-2017-12-1-17-32. Pavlova AА, Maschan MА, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T-lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017; 12 (1): 17–32. [In Russ, English abstract].

41. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T-cells genetically engineered to recognize CD19. Blood. 2010; 116 (20): 4099–4102. DOI: 10.1182/blood-2010-04-281931.

42. Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 2015; 263 (1): 68–89. DOI: 10.1111/imr.12243.

43. Zhu Y, Tan Y, Ou R, Zhong Q, Zheng L, Du Y et al. Anti-CD19 chimeric antigen receptor-modified T-cells for Bcell malignancies: a systematic review of efficacy and safety in clinical trials. Eur. J. Haematol. 2016; 96 (4): 389–396. DOI: 10.1111/ejh.12602.

44. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptortransduced T-cells. Blood. 2012; 119 (12): 2709–2720. DOI: 10.1182/blood-2011-10-384388.

45. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al. Efficacy and toxicity management of 19-28z CAR T-cell therapy in B-cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014; 6 (224): 224ra25. DOI: 10.1126/scitranslmed.3008226.

46. Lorentzen CL, Straten PT. CD19-Chimeric antigen receptor T-cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand. J. Immunol. 2015; 82 (4): 307–319. DOI: 10.1111/sji.12331.

47. Zhang T, Cao L, Xie J, Shi N, Zhang Z, Luo Z et al. Efficiency of CD19 chimeric antigen receptor-modified T-cells for treatment of B-cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget. 2015; 6 (32): 33961–33971. DOI: 10.18632/oncotarget.5582.

48. Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ et al. T-cells expressing an anti-B- cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016; 128 (13): 1688–1700. DOI: 10.1182/blood-2016-04-711903.

49. Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood. 2017; 130 (24): 2594–2602. DOI: 10.1182/blood-2017-06-793869.

50. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T-cell therapy: 25 years in the making. Blood Rev. 2016; 30 (3): 157–167. DOI: 10.1016/j.blre.2015.10.003.

51. Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T-cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology. 2016; 5 (12): e1251539. DOI: 10.1080/2162402X.2016.1251539.

52. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C et al. Human epidermal growth factor receptor 2 (HER2) – specific chimeric antigen receptor- modified T-cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 2015; 33 (15): 1688–1696. DOI: 10.1200/JCO.2014.58.0225.

53. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D et al. HER2-specific chimeric antigen receptor-modified virus-specific T-cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol. 2017; 3 (8): 1094–1101. DOI: 10.1001/jamaoncol.2017.0184.

54. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T-cells in patients with neuroblastoma. Blood. 2011; 118 (23): 6050–6056. DOI: 10.1182/blood-2011-05-354449.

55. O’Hara M, Stashwick C, Haas AR, Tanyi JL. Mesothelin as a target for chimeric antigen receptor-modified Tcells as anticancer therapy. Immunotherapy. 2016; 8 (4): 449–460. DOI: 10.2217/imt.16.4.

56. Yazdanifar M, Zhou R, Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-Tcells. Curr. Trends. Immunol. 2016; 17: 95–115.

57. Kelly RJ, Sharon E, Pastan I, Hassan R. Mesothelintargeted agents in clinical trials and in preclinical development. Mol. Cancer Ther. 2012; 11 (3): 517–525. DOI: 10.1158/1535-7163.MCT-11-0454.

58. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G et al. Mesothelin- specific chimeric antigen receptor mRNA-engineered T-cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2014; 2 (2): 112–120. DOI: 10.1158/2326-6066.CIR-13-0170.

59. Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T-cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 2013; 21 (4): 904– 912. DOI: 10.1038/mt.2013.17.

60. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 2010; 18 (4): 843–851. DOI: 10.1038/mt.2010.24.

61. Oluwole OO, Davila ML. At the bedside: clinical review of chimeric antigen receptor (CAR) T-cell therapy for B-cell malignancies. J. Leukoc. Biol. 2016; 100 (6): 1265–1272.

62. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol. Immunol. 2013; 10 (3): 230–252. DOI: 10.1038/cmi.2013.10.

63. Polyakova A, Kuznetsova K, Moshkovskii S. Proteogenomics meets cancer immunology: mass spectrometric discovery and analysis of neoantigens. Expert Review of Proteomics. 2015; 12 (5): 533–541. DOI: 10.1586/14789450.

64. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A. CRISPR/Cas9- mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T-cells. Sci. Rep. 2017; 7 (1): 737. DOI: 10.1038/s41598-017-00462-8.

65. Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M et al. Adoptive transfer of MART‑1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 2014; 20 (9): 2457– 2465. DOI: 10.1158/1078-0432.CCR-13-3017.


Дополнительные файлы

Для цитирования: Лупатов А.Ю., Каралкин П.А., Бойко А.А., Ярыгин К.Н. Аутотрансплантация Т-лимфоцитов как инструмент для антиген-специфической иммунотерапии онкологических заболеваний. Вестник трансплантологии и искусственных органов. 2018;20(3):95-104. https://doi.org/10.15825/1995-1191-2018-3-95-104

For citation: Lupatov A.Y., Karalkin P.A., Boyko A.A., Yarygin K.N. Autotransplantation of T-lymphocytes as a tool for antigen-specific immunotherapy of oncological diseases. Russian Journal of Transplantology and Artificial Organs. 2018;20(3):95-104. (In Russ.) https://doi.org/10.15825/1995-1191-2018-3-95-104

Просмотров: 78


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)