Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Диагностические возможности применения микро‑РНК при трансплантации почки

https://doi.org/10.15825/1995-1191-2018-3-87-94

Аннотация

Аллогенная трансплантация почки является оптимальным подходом для лечения пациентов с терминальной стадией хронической болезни почек. При этом посттрансплантационный  мониторинг и оптимизация иммуносупрессивной терапии с помощью ранних неинвазивных  молекулярно-биологических маркеров может значительно улучшить долгосрочный результат  трансплантационного лечения. В качестве маркеров повреждения почечного трансплантата  предлагается использовать микро-РНК, играющие фундаментальную роль в регуляции активности  различных генов. Уровень экспрессии микро-РНК в различных тканях может коррелировать с  определенными патологическими состояниями. В настоящем обзоре рассмотрены литературные  данные, касающиеся изучения перспектив применения микро-РНК в качестве биомаркеров течения посттрансплантационного периода у реципиентов почечного трансплантата.

Об авторах

И. А. Пирожков
ГБУ «Санкт-Петербургский научно-исследовательский институт скорой помощи имени И.И. Джанелидзе»
Россия

Адрес: 192242, Санкт-Петербург, ул. Будапештская, д. 3, лит. А. Тел. (911) 709-90-14



М. Е. Малышев
ГБУ «Санкт-Петербургский научно-исследовательский институт скорой помощи имени И.И. Джанелидзе»
Россия


О. Н. Резник
ГБУ «Санкт-Петербургский научно-исследовательский институт скорой помощи имени И.И. Джанелидзе»
Россия


В. А. Мануковский
ГБУ «Санкт-Петербургский научно-исследовательский институт скорой помощи имени И.И. Джанелидзе»
Россия


А. Е. Скворцов
ГБУ «Санкт-Петербургский научно-исследовательский институт скорой помощи имени И.И. Джанелидзе»
Россия


Список литературы

1. Williams WW, Taheri D, Tolkoff-Rubin N, Colvin RB. Clinical role of the renal transplant biopsy. Nat. Rev. Nephrol. 2012; 8 (2): 110–121.

2. Serуn D, Moreso F. Protocol biopsies in renal transplantation: prognostic value of structuralmonitoring. Kidney Int. 2007; 72 (6): 690–697.

3. Kozakowski N, Regele H. Biopsy diagnostics in renal allograft rejection: from histomorphology to biological function. Transpl. Int. 2009; 22 (10): 945–953.

4. Gwinner W. Renal transplant rejection markers. World J. Urol. 2007; 25: 445–455.

5. Knoll GA. Proteinuria in kidney transplant recipients: prevalence, prognosis, and evidence-based management. Am. J. Kidney Dis. 2009; 54 (6): 1131–1144.

6. Buob D, Grimbert P, Glowacki F, Labalette M, Dufossé F, Nochy D et al. Three-year outcome of isolated glomerulitis on 3-month protocol biopsies of donor HLA antibody negative patients. Transpl. Int. 2012; 25 (6): 663–670.

7. Willicombe M, Roufosse C, Brookes P, McLean AG, Galliford J, Cairns T et al. Acute cellular rejection: impact of donor-specific antibodies and C4d. Transplantation. 2014; 97: 433–439.

8. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010; 56 (11): 1733–1741.

9. Allegra A1, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int. J. Oncol. 2012; 41 (6): 1897–1912.

10. Xiao YF, Yong X, Fan YH, Lü MH, Yang SM, Hu CJ. MicroRNA detection in feces, sputum, pleural effusion and urine: novel tools for cancer screening (Review). Oncol. Rep. 2013; 30 (2): 535–544.

11. Chekulaeva M, Filipowicz W. Mechanisms of miRNA mediated post-transcriptional regulation in animal cells. Current Opinion in Cell Biology. 2009; 21 (3): 452–460.

12. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116; 2: 281–297.

13. Аушев ВН. Микро-РНК: малые молекулы с большим значением. Клин. онкогематол. 2015; 8 (1): 1–12. Aushev VN. MicroRNA: small molecules of great significance. Klin. onkogematol. 2015; 8 (1): 1–12.

14. Zhuo Y, Gao G, Shi JA, Zhou X, Wang X. miRNAs: biogenesis, origin and evolution, functions on virus-host interaction. Cell. Physiol. Biochem. 2013; 32 (3): 499–510.

15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell. Biol. 2014; 15 (8): 509–524.

16. Dalmay T. Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem. 2013; 54: 29–38.

17. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA- mediated gene regulation from common downregulation to mRNA-Specific upregulation. Int. J. Genomics. 2014:970607.

18. Lodish HF, Zhou B, Liu G, Chen CZ. Micromanagement of the immune system by miRNAs. Nat. Rev. Immunol. 2008; 8 (2): 120–130.

19. Spiegel JC, Lorenzen JM, Thum T. Role of miRNAs in immunity and organ transplantation. Expert Rev. Mol. Med. 2011; 13: e37.

20. Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J. Clin. Invest. 2004; 114 (1): 5–14.

21. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care (London, England). 2004; 8 (4).

22. Смирнов АВ, Добронравов ВА, Румянцев АШ, Шилов ЕМ, Ватазин АВ, Каюков ИГ и др. Национальные рекомендации. Острое повреждение почек: основные принципы диагностики, профилактики и терапии. Часть I. Нефрология. 2016; 20 (1): 79–104. Smirnov AV, Dobronravov VA, Rumyantsev AS, Shilov EM, Vatazin AV, Kayukov IG et al. National guidelines. Acute kidney injury: basic principles of diagnosis, prevention and therapy. Part I. Nephrology. 2016; 20 (1): 79–104.

23. Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet. 2004; 364: 1814–1827.

24. Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am. J. Transplant. 2011; 11: 2279–2296.

25. Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: asystematic review and meta- analysis. Nephrol. Dial. Transplant. 2009; 24: 1039–1047.

26. Legendre C, Canaud G, Martinez F. Factors influencing long-term outcome after kidney transplantation. Transpl. Int. 2014; 27 (1): 19–27.

27. Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat. Med. 2011; 17 (11): 1391–1401.

28. Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl. Acad. Sci. USA. 2010; 107 (32): 14339–14344.

29. Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am. J. Physiol. Renal. Physiol. 2011; 301 (4): 793–801.

30. Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL et al. Expression, circulation and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci. 2012; 129 (2): 256–267.

31. Yinfeng M, Jun F, Le Q, Tingting T. Serum miRNA expression and correlation with clinical characteristics in acute kidney injury. Int. J. Clin. Exp. Pathol. 2017; 10 (8): 8721– 8726.

32. Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl. Immunol. 2008; 19 (1): 81–85.

33. Betts G, Shankar S, Sherston S, Friend P, Wood KJ. Examination of serum miRNA levels in kidney transplant recipients with acute rejection. Transplantation. 2014; 97: e28–30.

34. Tao J, Yang X, Han Z, Lu P, Wang J, Liu X et al. Serum microRNA-99a helps detect acute rejection in renal transplantation. Transplant. Proc. 2015; 47: 1683–1687.

35. Anglicheau D, Sharma VK, Ding R, Hummel A, Snopkowski C, Dadhania D et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl. Acad. Sci. USA. 2009; 106 (13): 5330–5335.

36. Matz M, Fabritius K, Lorkowski C, Dürr M, Gaedeke J, Durek P. Identification of T Cell- Mediated Vascular Rejection After Kidney Transplantation by the Combined Measurement of 5 Specific MicroRNAs in Blood Transplantation. 2016; 100 (4): 898–907.

37. Liu X, Dong C, Jiang Z, Wu WK, Chan MT, Zhang J et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp. Cell Res. 2015; 333 (1): 155–163.

38. Misra MK, Pandey SK, Kapoor R, Sharma RK, Agrawal S. Genetic variants of MicroRNA-related genes insusceptibility and prognosis of end-stage renal disease and renal allograft outcome among north Indians. Pharmacogenetics and Genomics. 2014; 24 (9): 442–450.

39. Bijkerk R, Florijn BW, Khairoun M, Duijs JMGJ, Ocak G, de Vries APJ et al. Acute rejection after kidney transplantation associates with circulating microRNAs and vascular injury. Transplant. Direct. 2017; 3 (7): e174.

40. Scian MJ, Maluf DG, David KG, Archer KJ, Suh JL, Wolen AR et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am. J. Transplant. 2011; 11 (10): 2110–2122.

41. Glowacki F, Savary G, Gnemmi V, Buob D, Van der Hauwaert C, Lo-Guidice JM et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One. 2013; 8 (2): e58014.

42. Danger R, Paul C, Giral M, Lavault A, Foucher Y, Degauque N. et al. Expression of miR-142-5p in Peripheral Blood Mononuclear Cells from Renal Transplant Patients with Chronic Antibody-Mediated Rejection. PLoS One. 2013; 8 (4): e60702.

43. Chen J, Zmijewska A, Zhi D, Mannon R B. Cyclosporine-mediated allograft fibrosis is associated with micro- RNA-21 through AKT signaling. Transpl. Int. 2015; 28: 232–245.

44. Yuan J, Benway CJ, Bagley J, Iacomini J. Micro-RNA-494 promotes cyclosporine- induced nephrotoxicity and epithelial to mesenchymal transition by inhibiting PTEN. Am. J. Transplant. 2015; 15: 1682–1691.

45. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009; 4: e 6229.

46. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K et al. Detection of elevated levels of tumour associated microRNAs in serum of patients with diffuse large b-cell lymphoma. Br. J. Haematol. 2008; 141: 672–675.

47. Tam S, de Borja R, Tsao MS, McPherson JD. Robust global microrna expression profiling using next-generation sequencing technologies. Lab. Invest. 2014; 94: 350– 358.

48. Chen Y, Gelfond JA, McManus LM, Shireman PK. Reproducibility of quantitative RT- PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics. 2009; 10: 407.

49. Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods. 2009; 6: 474–476.

50. Sablok G, Milev I, Minkov G, Minkov I, Varotto C, Yahubyan G et al. Isomirex: Web- based identification of microRNAs, isomir variations and differential expression using next generation sequencing datasets. FEBS Lett. 2013; 587: 2629–2634.

51. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33: e179.


Рецензия

Для цитирования:


Пирожков И.А., Малышев М.Е., Резник О.Н., Мануковский В.А., Скворцов А.Е. Диагностические возможности применения микро‑РНК при трансплантации почки. Вестник трансплантологии и искусственных органов. 2018;20(3):87-94. https://doi.org/10.15825/1995-1191-2018-3-87-94

For citation:


Pirozhkov I.A., Malyshev M.E., Reznik O.N., Manukovsky V.A., Skvortsov A.E. Diagnostic possibilities of using micro-RNA for kidney transplantation. Russian Journal of Transplantology and Artificial Organs. 2018;20(3):87-94. (In Russ.) https://doi.org/10.15825/1995-1191-2018-3-87-94

Просмотров: 800


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)