Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

МикроРНК у реципиентов сердечного трансплантата

https://doi.org/10.15825/1995-1191-2017-2-126-132

Полный текст:

Аннотация

Представлен анализ данных, посвященных прогностической роли микроРНК при отторжении трансплантированного сердца. МикроРНК представляют собой класс малых некодирующих РНК, регулирующих экспрессию генов и влияющих на различные клеточные функции. Отмечены изменения их профилей при различных патологических процессах и отторжении солидных органов. Предположительно измерение уровней микроРНК при трансплантации сердца может иметь диагностическое и прогностическое значение при оценке риска развития отторжения и возможности минимизации иммуносупрессивной терапии. В настоящее время клинических данных о роли этих биомаркеров при трансплантации сердца накоплено недостаточно, и необходимы дальнейшие исследования связи уровней микроРНК с различными клиническими и лабораторными показателями у реципиентов сердца.

Об авторах

Д. А. Великий
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия


О. Е. Гичкун
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский университет)
Россия


О. П. Шевченко
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский университет)
Россия


Список литературы

1. Stehlik J, Starling RC, Movsesian MA, Fang JC, Brown RN, Hess ML, Lewis NP, Kirklin JK. Cardiac Transplant Research Database Group. Utility of longterm surveillance endomyocardial biopsy: a multi-institutional analysis. J. Heart Lung Transplant. 2006; 25 (12): 1402–1409.

2. Winters GL, McManus BM. Consistencies and controversies in the application of the International Society for Heart and Lung Transplantation working formulation for heart transplant biopsy specimens. Rapamycin Cardiac Rejection Treatment Trial Pathologists. J. Heart Lung Transplant. 1996; 15 (7): 728–735.

3. Nielsen H, Sørensen FB, Nielsen B, Bagger JP, Thayssen P, Baandrup U. Reproducibility of the acute rejection diagnosis in human cardiac allografts. The Stanford Classification and the International Grading System. J. Heart Lung Transplant. 1993; 12 (2): 239–243.

4. Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP, Kao A et al. IMAGE Study Group. Gene-expression profiling for rejection surveillance after cardiac transplantation. N. Engl. J. Med. 2010; 362 (20): 1890–1900.

5. Насырова АА, Шевченко АО. Функциональные показатели магистральных артерий и риск отторжения трансплантированного сердца. Трансплантология: итоги и перспективы. Том VII. 2015 год. Под ред. С.В. Готье. М.–Тверь: Триада, 2016: 331–351. Nasyrova AA, Shevchenko AO. Funktsional’nye pokazateli magistral’nykh arteriy i risk ottorzheniya transplantirovannogo serdtsa. Transplantologiya: itogi i perspektivy. Tom VII. 2015 god. Pod red. S.V. Got’e. M.–Tver’: Triada, 2016: 331–351.

6. Стаханова ЕА, Шевченко ОП. Роль мультиплексного анализа биомаркеров неоангиогенеза и воспаления при трансплантации сердца. Трансплантология: итоги и перспективы. Том VII. 2015 год. Под ред. С.В. Готье. М.–Тверь: Триада, 2016: 422–443. Stakhanova EA, Shevchenko OP. Rol’ mul’tipleksnogo analiza biomarkerov neoangiogeneza i vospaleniya pri transplantatsii serdtsa. Transplantologiya: itogi i perspektivy. Tom VII. 2015 god. Pod red. S.V. Got’e. M.–Tver’: Triada, 2016: 422–443.

7. Heidt S, San Segundo D, Shankar S, Mittal S, Muthusamy AS, Friend PJ, Fuggle SV, Wood KJ. Peripheral blood sampling for the detection of allograft rejection: biomarker identification and validation. Transplantation. 2011; 92 (1): 1–9.

8. Roedder S, Vitalone M, Khatri P, Sarwal MM. Biomarkers in solid organ transplantation: establishing personalized transplantation medicine. Genome Med. 2011; 3 (6): 37.

9. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat. Res. 2011; 717 (1–2): 85–90.

10. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, Benjamin H et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008; 3 (9): e3148.

11. Mas VR, Dumur CI, Scian MJ, Gehrau RC, Maluf DG. MicroRNAs as biomarkers in solid organ transplantation. Am. J. Transplant. 2013; 13 (1): 11–19.

12. Chekulaeva M, Filipowicz W. Mechanisms of miRNAmediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 2009; 21 (3): 452–460.

13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116 (2): 281–297.

14. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19 (1): 92–105.

15. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Celltype-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA. 2006; 103 (8): 2746–2751.

16. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136 (2): 215–233.

17. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol. Rev. 2011; 91 (3): 827–887.

18. Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 2014; 24 (16): R762–R776.

19. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 2013; 9 (9): 513–521.

20. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015; 13 (1): 17–24.

21. Zhang W, Zhou T, Ma SF, Machado RF, Bhorade SM, Garcia JG. MicroRNAs Implicated in Dysregulation of Gene Expression Following Human Lung Transplantation. Transpl. Respir. Med. 2013 1; 1 (1).

22. Guo Z, Maki M, Ding R, Yang Y, Zhang B, Xiong L. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci. Rep. 2014; 4: 5150.

23. Agudo J, Ruzo A, Tung N, Salmon H, Leboeuf M, Hashimoto D, Becker C et al. The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids. Nat. Immunol. 2014; 15 (1): 54–62.

24. Misra MK, Pandey SK, Kapoor R, Sharma RK, Agrawal S. Genetic variants of MicroRNA-related genes in susceptibility and prognosis of end-stage renal disease and renal allograft outcome among north Indians. Pharmacogenet Genomics. 2014; 24 (9): 442–450.

25. Sheppard HM, Verdon D, Brooks AE, Feisst V, Ho YY, Lorenz N, Fan V et al. MicroRNA regulation in human CD8+ T-cell subsets – cytokine exposure alone drives miR-146a expression. J. Transpl. Med. 2014; 12: 292.

26. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010; 142 (6): 914–929.

27. Liu X, Dong C, Jiang Z, Wu WK, Chan MT, Zhang J, Li H et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp. Cell Res. 2015; 333 (1): 155–163.

28. Farid WR, Pan Q, van der Meer AJ, de Ruiter PE, Ramakrishnaiah V, de Jonge J, Kwekkeboom J et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transpl. 2012; 18 (3): 290–297.

29. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, Li N, Cao X. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J. Immunol. 2010; 185 (12): 7244–7251.

30. Sukma Dewi I, Hollander Z, Lam KK, McManus JW, Tebbutt SJ, Ng RT, Keown PA et al. Association of Serum MiR-142-3p and MiR-101-3p Levels with Acute Cellular Rejection after Heart Transplantation. PLoS One. 2017; 12 (1): e0170842.

31. Huang B, Zhao J, Lei Z, Shen S, Li D, Shen GX, Zhang GM, Feng ZH. miR-142-3p restricts cAMP production in CD4+CD25– T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep. 2009; 10 (2): 180–185.

32. Danger R, Pallier A, Giral M, Martínez-Llordella M, Lozano JJ, Degauque N, Sanchez-Fueyo A et al. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J. Am. Soc. Nephrol. 2012; 23 (4): 597–606.

33. Asaoka T, Sotolongo B, Island ER, Tryphonopoulos P, Selvaggi G, Moon J, Tekin A et al. MicroRNA signature of intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Am. J. Transplant. 2012; 12 (2): 458–468.

34. Van Aelst LN, Summer G, Li S, Gupta SK, Heggermont W, De Vusser K, Carai P et al. RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection. Am. J. Transplant. 2016; 16 (1): 99–110.

35. Duong Van Huyen JP, Tible M, Gay A, Guillemain R, Aubert O, Varnous S, Iserin F et al. MicroRNAs as noninvasive biomarkers of heart transplant rejection. Eur. Heart J. 2014; 35 (45): 3194–3202.

36. Vitalone MJ, Sigdel TK, Salomonis N, Sarwal RD, Hsieh SC, Sarwal MM. Transcriptional Perturbations in Graft Rejection. Transplantation. 2015; 99 (9): 1882–1893.

37. Wei L, Gong X, Martinez OM, Krams SM. Differential expression and functions of microRNAs in liver transplantation and potential use as non-invasive biomarkers. Transpl. Immunol. 2013; 29 (1–4): 123–129.

38. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl. Acad. Sci. USA. 2010; 107 (30): 13450–13455.

39. Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G. MicroRNAs affect dendritic cell function and phenotype. Immunology. 2015; 144 (2): 197–205.

40. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. USA. 2009; 106 (8): 2735–2740.

41. Feng Z, Xia Y, Zhang M, Zheng J. MicroRNA-155 regulates T-cell proliferation through targeting GSK3β in cardiac allograft rejection in a murine transplantation model. Cell Immunol. 2013; 281 (2): 141–149.

42. Feinberg MW, Moore KJ. MicroRNA Regulation of Atherosclerosis. Circ. Res. 2016; 118 (4): 703–720.

43. Zhou M, Hara H, Dai Y, Mou L, Cooper DK, Wu C, Cai Z. Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation. Int. J. Mol. Sci. 2016; 17 (8).

44. Lund LH, Edwards LB, Kucheryavaya AY et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report – 2014; focus theme: retransplantation. J. Heart Lung Transplant. 2014; 33: 996–1008.

45. Seki A, Fishbein MC. Predicting the development of cardiac allograft vasculopathy. Cardiovasc. Pathol. 2014; 23: 253–260.

46. Vassalli G, Gallino A, Weis M et al. Alloimmunity and non-immunologic risk factors in cardiac allograft vasculopathy. Eur. Heart J. 2003; 24: 1180–1188.

47. Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ. Res. 2006; 99: 801–815.

48. Kapadia SR, Nissen SE, Tuzcu EM. Impact of intravascular ultrasound in understanding transplant coronary artery disease. Curr. Opin. Cardiol. 1999; 14: 140–150.

49. Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1609–1614.

50. Raichlin ER, McConnell JP, Lerman A et al. Systemic inflammation and metabolic syndrome in cardiac allograft vasculopathy. J. Heart Lung Transplant. 2007; 26: 826–833.

51. Singh N, Jacobs F, Rader DJ, Vanhaecke J, Van Cleemput J, De Geest B. Impaired cholesterol efflux capacity and vasculoprotective function of high-density lipoprotein in heart transplant recipients. J. Heart Lung Transplant. 2014; 33: 499–506.

52. Biadi O, Potena L, Fearon WF et al. Interplay between systemic inflammation and markers of insulin resistance in cardiovascular prognosis after heart transplantation. J. Heart Lung Transplant. 2007; 26: 324–330.

53. Valantine H, Rickenbacker P, Kemna M et al. Metabolic abnormalities characteristic of dysmetabolic syndrome predict the development of transplant coronary artery disease: aprospective study. Circulation. 2001; 103: 2144–2152.

54. Nath DS, Angaswamy N, Basha HI et al. Donor-specific antibodies to human leukocyte antigens are associated with and precede antibodies to major histocompatibility complex class I-related chain A in antibody-mediated rejection and cardiac allograft vasculopathy after human cardiac transplantation. Hum. Immunol. 2010; 71: 1191–1196.

55. Acevedo MJ, Caro-Oleas JL, Alvarez-Marquez AJ et al. Antibodies against heterogeneous nuclear ribonucleoprotein K in patients with cardiac allograft vasculopathy. J. Heart Lung Transplant. 2011; 30: 1051–1059.

56. Hognestad A, Endresen K, Wergeland R et al. Plasma C‑reactive protein as a marker of cardiac allograft vasculopathy in heart transplant recipients. J. Am. Coll. Cardiol. 2003; 42: 477–482.

57. Arora S, Gunther A, Wennerblom B et al. Systemic markers of inflammation are associated with cardiac allograft vasculopathy and an increased intimal inflammatory component. Am. J. Transplant. 2010; 10: 1428–1436.

58. Arora S, Andreassen A, Simonsen S et al. Prognostic importance of renal function 1 year after heart transplantation for all-cause and cardiac mortality and development of allograft vasculopathy. Transplantation. 2007; 84: 149–154.

59. Schober A, Hristov M, Kofler S et al. CD34+CD140+ cells and circulating CXCL12 correlate with the angiographically assessed severity of cardiac allograft vasculopathy. Eur. Heart J. 2011; 32: 476–484.

60. Scott E, Loya K, Mountford J, Milligan G, Baker AH. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies. Free Radic. Biol. Med. 2013; 64: 52–60.

61. Yamakuchi M. MicroRNAs in vascular biology. Int. J. Vasc. Med. 2012; 2012: 794898.

62. Singh N, Heggermont W, Fieuws S, Vanhaecke J et al. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J. Heart Lung Transplant. 2015; 34: 1376–1384.

63. Bonauer A, Carmona G, Iwasaki M et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009; 324: 1710–1713.

64. Daniel JM, Penzkofer D, Teske R et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res. 2014; 103: 564–572.

65. Loyer X, Potteaux S, Vion AC et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res. 2014; 114: 434–443.

66. Singh N, Vanhaecke J, Van Cleemput J, De Geest B. Markers of endothelial injury and platelet microparticles are distinct in patients with stable native coronary artery disease and with cardiac allograft vasculopathy. Int. J. Cardiol. 2015; 179: 331–333.

67. Fish JE, Santoro MM, Morton SU et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell. 2008; 15: 272–284.

68. Schober A, Nazari-Jahantigh M, Wei Y et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med. 2014; 20: 368–376.

69. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007; 9: 654–659.

70. Hamdorf M, Kawakita S, Everly M. The Potential of MicroRNAs as Novel Biomarkers for Transplant Rejection. J. Immunol. Res. 2017; 2017: 4072364.

71. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect. Clin. Res. 2016; 7 (2): 68–74.

72. Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011; 18 (12): 1121–1126.


Для цитирования:


Великий Д.А., Гичкун О.Е., Шевченко О.П. МикроРНК у реципиентов сердечного трансплантата. Вестник трансплантологии и искусственных органов. 2017;19(2):126-132. https://doi.org/10.15825/1995-1191-2017-2-126-132

For citation:


Velikiy D.A., Gichkun O.E., Shevchenko O.P. MicroRNAs in heart transplant recipients. Russian Journal of Transplantology and Artificial Organs. 2017;19(2):126-132. (In Russ.) https://doi.org/10.15825/1995-1191-2017-2-126-132

Просмотров: 285


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)