Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Мезенхимальные стромальные клетки при хронических фиброзирующих заболеваниях печени: роль в патогенезе и при терапевтическом применении

https://doi.org/10.15825/1995-1191-2025-4-110-124

Аннотация

Цель: провести сравнительный анализ биорегуляторной роли мезенхимальных стромальных клеток (МСК) печени в норме, при остром и хроническом повреждении печени с развитием деструктивных фиброзирующих процессов, а также при коррекции структурных нарушений в печени путем имплантации в организм экзогенных МСК из здоровых тканей. Анализ показал, что МСК в печени поддерживают ее структурный гомеостаз, взаимодействуя с тканевыми миофибробластами и мигрирующими клетками иммунной системы. При остром повреждении печени, не истощающем резервы тканевой адаптации, печеночные (резидентные) МСК регуляторно поддерживают тканевой гомеостаз. При хроническом повреждении печени, истощающем резервы тканевой адаптации, наступает активация иммунных клеток и печеночных МСК, которые индуцируют воспаление печени и переход МСК в миофибробласты. Миофибробласты, становясь активированными фибробластами, начинают продуцировать избыточные количества внеклеточного матрикса и участвовать в активации процессов фиброзирования печени. Экзогенные апоптотические МСК из здоровых ауто- или аллогенных тканей при введении в организм при хроническом повреждении печени способны восполнить дефицит регуляторных факторов, а также восстановить регуляцию метаболизма и структурного гомеостаза в печени за счет выделяемых ими паракринных и трофических факторов. Экзогенные МСК позволяют надежно восстановить метаболизм и структурный гомеостаз в печени, если перед использованием дополнительно усилить их регуляторную активность и если не применять их у реципиентов с необратимым повреждением печени.

Об авторах

Н. А. Онищенко
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



М. Ю. Шагидулин
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Шагидулин Мурат Юнусович

123182, Москва, ул. Щукинская, д. 1



A. А. Ванюкова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,
Россия

Москва



А. В. Кузьмина
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,

Москва



А. О. Никольская
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,
Россия

Москва



Е. А. Волкова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,

Москва



А. И. Костышева
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



И. А. Лычагин
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



К. А. Казанцева
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



М. Р. Ибрагимова
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



А. М. Григорьев
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,
Россия

Москва



А. С. Пономарева
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,
Россия

Москва



Ю Б. Басок
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России,
Россия

Москва



Список литературы

1. Halliday N, Westbrook RH. Liver transplantation: need, indications, patient selection and pre-transplant care. Br J Hosp Med (Lond). 2017; 78 (5): 252–259. doi: 10.12968/hmed.2017.78.5.252.

2. Olivo R, Guarrera JV, Pyrsopoulos NT. Liver Transplantation for Acute Liver Failure. Clin Liver Dis. 2018; 22 (2): 409–417. doi: 10.1016/j.cld.2018.01.014.

3. Басок ЮБ, Пономарева АС, Грудинин НВ, Круглов ДН, Богданов ВК, Белова АД, Севастьянов ВИ. Применение мезенхимальных стромальных клеток при трансплантации солидных органов: вызовы и перспективы (систематический обзор). Вестник трансплантологии и искусственных органов. 2025; 27 (1): 114–134. https://doi.org/10.15825/1995-1191-2025-1-114-134.

4. Eom YW, Kang SH, Kim MY, Lee JI, Baik SK. Mesenchymal stem cells to treat liver diseases. Ann Transl Med. 2020; 8: 563. doi: 10.21037/atm.2020.02.163.

5. Qin L, Liu N, Bao CL, Yang DZ, Ma GX, Yi WH et al. Mesenchymal stem cells in fibrotic diseases – the two sides of the same coin. Acta Pharmacol Sin. 2023; 44 (2): 268–287. doi: 10.1038/s41401-022-00952-0.

6. Carvalho AB, Quintanilha LF, Dias JV, Paredes BD, Mannheimer EG, Carvalho FG et al. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells. 2008; 26 (5): 1307–1314. doi: 10.1634/stemcells.2007-0941.

7. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S et al. Bone marrowderived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011; 19: 257–272. https://doi.org/10.1016/j.ccr.2011.01.020.

8. Онищенко НА, Никольская АО, Шагидулин МЮ. Прогрессирующая дисфункция иммунитета как фактор, препятствующий восстановительной регенерации печени при хронических фиброзирующих заболеваниях. Патологическая физиология и экспериментальная терапия. 2023; 67 (3): 109–123. doi: 10.25557/0031-2991.2023.03.109-123.

9. Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol. 2023; 20 (6): 583–599. doi: 10.1038/s41423-023-00983-5. Epub 2023 Feb 24. Erratum in: Cell Mol Immunol. 2023; 20 (6): 687–688. doi: 10.1038/s41423-023-01010-3.

10. Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol. 2022; 44 (11): 5153–5172. doi: 10.3390/cimb44110351.

11. Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. 2016; 1416: 123–146. https://doi.org/10.1007/978-1-4939-3584-0_7.

12. Naji A, Favier B, Deschaseaux F, Rouas-Freiss N, Eitoku M, Suganuma N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther. 2019; 10: 56. https://doi.org/10.1186/s13287-019-1158-4.

13. Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Front Immunol. 2019; 10: 1228. https://doi.org/10.3389/fimmu.2019.01228.

14. Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan TF, Ke LY. Identifying the therapeutic significance of mesenchymal stem cells. Cells. 2020; 9: 1145. https://doi.org/10.3390/cells9051145.

15. Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 2022; 29 (11): 1515–1530. https://doi.org/10.1016/j.stem.2022.10.001.

16. Qiao H, Zhou Y, Qin X, Cheng J, He Y, Jiang Y. NADPH oxidase signaling pathway mediates mesenchymal stem cell-induced inhibition of hepatic stellate cell activation. Stem Cells Int. 2018; 10: 1239143. https://doi.org/10.1155/2018/1239143.

17. Lee C, Kim M, Han J, Yoon M, Jung Y. Mesenchymal stem cells influence activation of hepatic stellate cells, and constitute a promising therapy for liver fibrosis. Biomedicines. 2021; 9: 1598. https://doi.org/10.3390/biomedicines9111598.

18. Milosavljevic N, Gazdic M, Simovic Markovic B, Arsenijevic A, Nurkovic J, Dolicanin Z et al. Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells – an experimental study. Transpl Int. 2018; 31: 102–115. https://doi.org/10.1111/tri.13023.

19. Chen QH, Wu F, Liu L, Chen HB, Zheng RQ, Wang HL, Yu LN. Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Res Ther. 2020; 11: 91. https://doi.org/10.1186/s13287-020-01612-y.

20. Du L, Lin L, Li Q, Liu K, Huang Y, Wang X et al. IGF-2 preprograms maturing macrophages to acquire oxidative phosphorylation-dependent anti-inflammatory properties. Cell Metab. 2019; 29: 1363–1375.e8. https://doi.org/10.1016/j.cmet.2019.01.006.

21. Wang X, Lin L, Lan B, Wang Y, Du L, Chen X et al. IGF2R-initiated proton rechanneling dictates an antiinflammatory property in macrophages. Sci Adv. 2020; 6: eabb7389. https://doi.org/10.1126/sciadv.abb7389.

22. Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci. 2020; 16: 893–903. https://doi.org/10.7150/ijbs.39725.

23. Xu C, Yu P, Han X, Du L, Gan J, Wang Y et al. TGFbeta promotes immune responses in the presence of mesenchymal stem cells. J Immunol. 2014; 192: 103–109. https://doi.org/10.4049/jimmunol.1302164.

24. De Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P. TGF-beta and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018; 43: 25–37. https://doi.org/10.1016/j.cytogfr.2018.06.002.

25. Kisseleva T. The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology. 2017; 65: 1039–1043. https://doi.org/10.1002/hep.28948.

26. Bernard NJ. PU.1 pulls the strings in fibrotic disease. Nat Rev Rheumatol. 2019; 15: 187. https://doi.org/10.1038/s41584-019-0193-y.

27. Wohlfahrt T, Rauber S, Uebe S, Luber M, Soare A, Ekici A et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature. 2019; 566: 344–349. https://doi.org/10.1038/s41586-019-0896-x.

28. Liu Q, Yu J, Wang L, Tang Y, Zhou Q, Ji S et al. Inhibition of PU.1 ameliorates metabolic dysfunction and nonalcoholic steatohepatitis. J Hepatol. 2020; 73: 361–370. https://doi.org/10.1016/j.jhep.2020.02.025.

29. Gu L, Xu Q, Cao H. 1,25(OH)2D3 protects liver fibrosis through decreasing the generation of TH17 cells. Med Sci Monit: Int Med J Exp Clin Res. 2017; 23: 2049–2058. https://doi.org/10.12659/msm.904271.

30. Yokota T, McCourt J, Ma F, Ren S, Li S, Kim TH et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell. 2020; 182: 545–562.e523. https://doi.org/10.1016/j.cell.2020.06.030.

31. Nishimichi N, Tsujino K, Kanno K, Sentani K, Kobayashi T, Chayama K et al. Induced hepatic stellate cell integrin, α8β1, enhances cellular contractility and TGFβ activity in liver fibrosis. J Pathol. 2021; 253: 366–373. https://doi.org/10.1002/path.5618.

32. Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in nonobese NAFLD. Nat Commun. 2020; 11: 4982. https://doi.org/10.1038/s41467-020-18754-5.

33. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017; 127: 55–64. https://doi.org/10.1172/jci88881.

34. Лебедева ЕИ, Щастный АТ, Бабенко АС. Модель токсического фиброза у крыс линии Wistar: морфологические и молекулярно-генетические параметры точки перехода в цирроз. Гены и клетки. 2023; 18 (3): 219–234. https://doi.org/10.23868/gc546031.

35. Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol. 2018; 68: 1272–1285. https://doi.org/10.1016/j.jhep.2018.01.030.

36. Cai H, Guo H. Mesenchymal stem cells and their exocytotic vesicles. Int J Mol Sci. 2023; 24 (3): 2085. doi: 10.3390/ijms24032085.

37. Wang X, Wang Y, Lu W, Qu J, Zhang Y, Ye J. Wang X et al. Effectiveness and mechanisms of mesenchymal stem cell therapy in preclinical animal models of hepatic fibrosis: a systematic review and meta-analysis. Front Bioeng Biotechnol. 2024; 12: 1424253. doi: 10.3389/fbioe.2024.1424253.

38. Driscoll J, Patel T. The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease. J Gastroenterol. 2019; 54: 763–773. https://doi.org/10.1007/s00535-019-01599-1.

39. Adas G, Koc B, Adas M, Duruksu G, Subasi C, Kemik O et al. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch Surg. 2016; 401: 725–740. https://doi.org/10.1007/s00423-016-1380-9.

40. Liu H, Wang X, Deng H, Huang H, Liu Y, Zhong Z et al. Integrated Transcriptome and Metabolomics to Reveal the Mechanism of Adipose Mesenchymal Stem Cells in Treating Liver Fibrosis. Int J Mol Sci. 2023; 24 (22): 16086. doi: 10.3390/ijms242216086.

41. Lin F, Chen W, Zhou J, Zhu J, Yao Q, Feng B et al. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury. Cell Death Dis. 2022; 13: 271. https://doi.org/10.1038/s41419-022-04708-w.

42. Cheng Y, Wang B, Zhou H, Dang S, Jin M, Shi Y et al. Autophagy is required for maintenance of liver progenitor cell functionality. Cell Physiol Biochem. 2015; 36 (3): 1163–1174. https://doi.org/10.1159/000430287.

43. Lin D, Chen H, Xiong J, Zhang J, Hu Z, Gao J et al. Mesenchymal stem cells exosomal let-7a-5p improve autophagic flux and alleviate liver injury in acuteon-chronic liver failure by promoting nuclear expression of TFEB. Cell Death Dis. 2022; 13: 865. https://doi.org/10.1038/s41419-022-05303-9.

44. Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C et al. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology. 2023; 21 (1): 29. doi: 10.1186/s12951-023-01788-4.

45. Yao L, Hu X, Yuan M, Liu P, Zhang Q, Wang Z et al. Human umbilical cord-derived mesenchymal stromal cells alleviate liver cirrhosis through the Hippo/YAP/Id1 pathway and macrophage-dependent mechanism. Int Immunopharmacol. 2023; 123: 110456. doi: 10.1016/j.intimp.2023.110456.

46. Liu H, Huang H, Liu Y, Yang Y, Deng H, Wang X et al. Adipose-derived mesenchymal stem cells inhibit hepatic stellate cells activation to alleviate liver fibrosis via Hippo pathway. Stem Cell Res Ther. 2024; 15 (1): 378. doi: 10.1186/s13287-024-03988-7.

47. Zhang LT, Peng XB, Fang XQ, Li JF, Chen H, Mao XR. Human umbilical cord mesenchymal stem cells inhibit proliferation of hepatic stellate cells in vitro. Int J Mol Med. 2018; 41: 2545–52. https://doi.org/10.3892/ijmm.2018.3500.

48. Gan L, Zheng L, Yao L, Lei L, Huang Y, Zeng Z, Fang N. Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the miR-20a5p/TGFBR2 axis to affect the p38 MAPK/NF-κB pathway. Cytokine. 2023; 172: 156386. doi: 10.1016/j.cyto.2023.156386.

49. Zong R, Zheng Y, Yan Y, Sun W, Kong L, Huang Y et al. Mesenchymal stem cells-derived exosomes alleviate liver fibrosis by targeting Hedgehog/SMO signaling. Hepatol Int. 2024; 18 (6): 1781–1791. doi: 10.1007/s12072-024-10717-y.

50. Basalova N, Sagaradze G, Arbatskiy M, Evtushenko E, Kulebyakin K, Grigorieva O et al. Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated microRNAs within extracellular vesicles. Cells. 2020; 9: 1272. https://doi.org/10.3390/cells9051272.

51. Liu P, Yao L, Hu X, Wang Z, Xiong Z, Jiang Y. Recent advances in the immunomodulation mechanism of mesenchymal stem cell therapy in liver diseases. J Gastroenterol Hepatol. 2023; 38 (7): 1099–1106. doi: 10.1111/jgh.16247.

52. Feng X, Feng B, Zhou J, Yang J, Pan Q, Yu J et al. Mesenchymal stem cells alleviate mouse liver fibrosis by inhibiting pathogenic function of intrahepatic B cells. Hepatology. 2024; 10.1097. doi: 10.1097/HEP.0000000000000831.

53. Liu K, Wang FS, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol Immunol. 2021; 18: 38–44. doi: 10.1038/s41423-020-00560-0.

54. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018; 14 (8): 493–507. doi: 10.1038/s41581018-0023-5.

55. Yang H, Sun J, Li Y, Duan WM, Bi J, Qu T. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4(+)CD25(high)CD45RA(+) regulatory T cell production and modulating cytokine secretion. Cell Immunol. 2016; 302: 26–31. https://doi.org/10.1016/j.cellimm.2016.01.002.

56. Wu HW, Chen HD, Chen YH, Mao XL, Feng YY, Li SW, Zhou XB. The effects of programmed cell death of mesenchymal stem cells on the development of liver fibrosis. Stem Cells Int. 2023; 11: 4586398. doi: 10.1155/2023/4586398.

57. Zheng Q, Zhang S, Guo WZ, Li XK. The unique immunomodulatory properties of MSC-derived exosomes in organ transplantation. Front Immunol. 2021; 12: 659621. https://doi.org/10.3389/fimmu.2021.659621.

58. Elzainy A, El Sadik A, Altowayan WM. Comparison between the Regenerative and Therapeutic Impacts of Bone Marrow Mesenchymal Stem Cells and Adipose Mesenchymal Stem Cells Pre-Treated with Melatonin on Liver Fibrosis. Biomolecules. 2024; 14 (3): 297. doi: 10.3390/biom14030297.

59. Ding F, Liu Y, Li J, Wei X, Zhao J, Liu X, Zhang L. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation. Stem Cell Res Ther. 2024; 15 (1): 44. doi: 10.1186/s13287-024-03648-w.

60. Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q et al. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience. 2024; 27 (2): 108912. doi: 10.1016/j.isci.2024.108912.

61. Shams S, Mohsin S, Nasir GA, Khan M, Khan SN. Mesenchymal stem cells pretreated with HGF and FGF4 can reduce liver fibrosis in mice. Stem Cells Int. 2015; 2015: 747245. https://doi.org/10.1155/2015/747245.

62. Mortezaee K, Khanlarkhani N, Sabbaghziarani F, Nekoonam S, Majidpoor J, Hosseini A et al. Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res. 2017; 369: 303–312. https://doi.org/10.1007/s00441-0172604-1. (Retraction published Cell Tissue Res. 2025 Feb 17. doi: 10.1007/s00441-025-03959-1).

63. Iqbal M, Shams S, Rafiq H, Khan M, Khan S, Sadique Khattak U et al. Combinatorial therapeutic potential of stem cells and benzimidazol derivatives for the reduction of liver fibrosis. Pharmaceuticals (Basel). 2023; 16 (2): 306. doi: 10.3390/ph16020306.

64. Fathy M, Okabe M, M Othman E, Saad Eldien HM, Yoshida T. Preconditioning of adipose-derived mesenchymal stem-like cells with eugenol potentiates their migration and proliferation in vitro and therapeutic abilities in rat hepatic fibrosis. Molecules. 2020; 25 (9): 2020. https://doi.org/10.3390/molecules25092020.

65. Baig MT, Ghufran H, Mehmood A, Azam M, Humayun S, Riazuddin S. Vitamin E pretreated Wharton’s jelly-derived mesenchymal stem cells attenuate CCl4induced hepatocyte injury in vitro and liver fibrosis in vivo. Biochem Pharm. 2021; 186: 114480. https://doi.org/10.1016/j.bcp.2021.114480.

66. Lai YJ, Sung YT, Lai YA, Chen LN, Chen TS, Chien CT. L-Theanine-treated adiposederived mesenchymal stem cells alleviate the cytotoxicity induced by N-nitrosodiethylamine in liver. Tissue Eng Regen Med. 2022; 19: 1207–1221. https://doi.org/10.1007/s13770-02200472-2.

67. Shivaramu S, Maiti SK, Banu SA, Kalaiselvan E, Sharun K, Mishra M et al. Synergistic hepatoprotective effects of mesenchymal stem cells and platelet-rich plasma in a rat model of bile duct ligation-induced liver cirrhosis. Cells. 2024; 13 (5): 404. doi: 10.3390/cells13050404.

68. Amansyah F, Budu B, Achmad MH, Daud NMAS, Putra A, Massi MN et al. Secretome of Hypoxia-Preconditioned Mesenchymal Stem Cells Promotes Liver Regeneration and Anti-Fibrotic Effect in Liver Fibrosis Animal Model. Pak J Biol Sci: PJBS. 2024; 27 (1): 18–26. doi: 10.3923/pjbs.2024.18.26.

69. Xie Y, Yao J, Yan M, Lin Y, Wei J, Wang H et al. Pretreatment of UC-MSCs with IFN-α2 improves treatment of liver fibrosis by recruiting neutrophils. J Transl Med. 2023; 21 (1): 832. doi: 10.1186/s12967-023-04732-0.

70. Liu C, Zhang YS, Chen F, Wu XY, Zhang BB, Wu ZD, Lei JX. Immunopathology in schistosomiasis is regulated by TLR2,4and IFN-gamma-activated MSC through modulating Th1/Th2 responses. Stem Cell Res Ther. 2020; 11: 217. https://doi.org/10.1186/s13287-02001735-2.

71. Xu Y, Wang XS, Zhou XL, Lu WM, Tang XK, Jin Y, Ye JS. Mesenchymal stem cell therapy for liver fibrosis need «partner»: Results based on a meta-analysis of preclinical studies. World J Gastroenterol. 2024; 30 (32): 3766–3782. doi: 10.3748/wjg.v30.i32.3766.

72. Moon SH, Lee CM, Park SH, Jin Nam M. Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats. Growth Factors. 2019; 37: 105–119. https://doi.org/10.1080/08977194.2019.1652399.

73. Lou G, Yang Y, Liu F, Ye B, Chen Z, Zheng M, Liu Y. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med. 2017; 21: 2963– 2973. https://doi.org/10.1111/jcmm.13208.

74. Choi JS, Jeong IS, Han JH, Cheon SH, Kim SW. IL10-secreting human MSCs generated by TALEN gene editing ameliorate liver fibrosis through enhanced antifibrotic activity. Biomater Sci. 2019; 7: 1078–1087. https://doi.org/10.1039/c8bm01347k.

75. Zhang X, Hu MG, Pan K, Li CH, Liu R. 3D spheroid culture enhances the expression of antifibrotic factors in human adipose-derived MSCs and improves their therapeutic effects on hepatic fibrosis. Stem Cells Int. 2016; 2016: 4626073. https://doi.org/10.1155/2016/4626073.

76. Takahashi Y, Yuniartha R, Yamaza T, Sonoda S, Yamaza H, Kirino K et al. Therapeutic potential of spheroids of stem cells from human exfoliated deciduous teeth for chronic liver fibrosis and hemophilia A. Pediatr Surg Int. 2019; 35: 1379–1388. https://doi.org/10.1007/s00383019-04564-4.

77. Lee S, Kim HS, Min BH, Kim BG, Kim SA, Nam H et al. Enhancement of antiinflammatory and immunomodulatory effects of adipose-derived human mesenchymal stem cells by making uniform spheroid on the new nanopatterned plates. Biochem Biophys Res Commun. 2021; 552: 164–169. https://doi.org/10.1016/j.bbrc.2021.03.026.

78. Li S, Fu X, Wang J, Yang H, Wang D, Dong X et al. Therapeutic efficacy and in vivo distribution of human umbilical cord-derived mesenchymal stem cell spheroids transplanted via B-Ultrasound-guided percutaneous portal vein puncture in rhesus monkey models of liver fibrosis. Stem Cell Res Ther. 2024; 15 (1): 315. doi: 10.1186/s13287-024-03934-7.

79. Shagidulin M, Onishchenko N, Sevastianov V, Krasheninnikov M, Lyundup A, Nikolskaya A et al. Experimental Correction and Treatment of Chronic Liver Failure Using Implantable Cell-Engineering Constructs of the Auxiliary Liver Based on a Bioactive Heterogeneous Biopolymer Hydrogel. Gels. 2023; 9 (6): 456. https://doi.org/10.3390/gels9060456.

80. Shagidulin M, Onishchenko N, Grechina A, Nikolskaya A, Krasheninnikov M, Lyundup A et al. Recombinant spidroin microgel as the base of cell-engineered constructs mediates liver regeneration in rat. Polymers (Basel). 2022; 14 (15): 3179. https://doi.org/10.3390/polym14153179.

81. Шагидулин МЮ, Онищенко НА, Басок ЮБ, Григорьев АМ, Кириллова АД, Немец ЕА и др. Функциональная эффективность клеточно-инженерной конструкции печени на основе тканеспецифического матрикса (экспериментальная модель хронической печеночной недостаточности). Вестник трансплантологии и искусственных органов. 2020; 22 (4): 89–97. https://doi.org/10.15825/1995-1191-2020-4-89-97.

82. Itaba N, Noda I, Oka H, Kono Y, Okinaka K, Yokobata T et al. Hepatic cell sheets engineered from human mesenchymal stem cells with a single small molecule compound IC-2 ameliorate acute liver injury in mice. Regen Ther. 2018; 9: 45–57. https://doi.org/10.1016/j.reth.2018.07.001.

83. Fukushima K, Itaba N, Kono Y, Okazaki S, Enokida S, Kuranobu N et al. Secreted matrix metalloproteinase-14 is a predictor for antifibrotic effect of IC-2-engineered mesenchymal stem cell sheets on liver fibrosis in mice. Regen Ther. 2021; 18: 292–301. https://doi.org/10.1016/j.reth.2021.08.004.

84. Itaba N, Kono Y, Watanabe K, Yokobata T, Oka H, Osaki M et al. Reversal of established liver fibrosis by IC-2engineered mesenchymal stem cell sheets. Sci Rep. 2019; 9: 6841. https://doi.org/10.1038/s41598-019-43298-0.

85. Lozinsky VI, Kulakova VK, Grigoriev AM, Podorozhko EA, Kirsanova LA, Kirillova AD et al. Cryostructuring of Polymeric Systems: 63. Synthesis of Two Chemically Tanned Gelatin-Based Cryostructurates and Evaluation of Their Potential as Scaffolds for Culturing of Mammalian Cells. Gels. 2022; 8 (11): 695. doi: 10.3390/gels8110695.

86. Basok YuB, Grigoriev AM, Lozinsky VI, Kirsanova LA, Kulakova VK, Podorozhko EA et al. Cryogenically Structured Extracellular Matrix Mimetic Based on a Concentrated Collagen-Containing Solution. Inorg Mater Appl Res. 2024; 15: 358–366. https://doi.org/10.1134/S2075113324020096.


Дополнительные файлы

Рецензия

Для цитирования:


Онищенко Н.А., Шагидулин М.Ю., Ванюкова A.А., Кузьмина А.В., Никольская А.О., Волкова Е.А., Костышева А.И., Лычагин И.А., Казанцева К.А., Ибрагимова М.Р., Григорьев А.М., Пономарева А.С., Басок Ю.Б. Мезенхимальные стромальные клетки при хронических фиброзирующих заболеваниях печени: роль в патогенезе и при терапевтическом применении. Вестник трансплантологии и искусственных органов. 2025;27(4):110-124. https://doi.org/10.15825/1995-1191-2025-4-110-124

For citation:


Onishchenko N.A., Shagidulin M.Yu., Vaniukova A.A., Kuzmina A.V., Nikolskaya A.O., Volkova E.A., Kostysheva A.I., Lychagin I.A., Kazantseva K.A., Ibragimova M.R., Grigoriev A.M., Ponomareva A.S., Basok Yu.B. Pathogenic and therapeutic roles of mesenchymal stem cells in liver fibrosis. Russian Journal of Transplantology and Artificial Organs. 2025;27(4):110-124. (In Russ.) https://doi.org/10.15825/1995-1191-2025-4-110-124

Просмотров: 17


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)