Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Структурная дегенерация биологических протезов клапанов сердца: имеются ли общие механизмы с атеросклерозом и кальцинирующим аортальным стенозом?

https://doi.org/10.15825/1995-1191-2022-1-96-106

Полный текст:

Аннотация

Современные исследования показывают, что некоторые из патогенетических процессов, стоящих за структурным разрушением биопротезов клапанов сердца, в значительной мере сходны с таковыми, задействованными при развитии атеросклеротических поражений сосудов и кальцификации нативных клапанов. К их числу относится липидная и лейкоцитарная инфильтрация, характерная как для протезных, так и для нативных тканей. Эти процессы сопровождаются формированием пенистых клеток, избыточной продукцией матрикс-разрушающих ферментов и усилением окислительного стресса. Данный факт позволяет выдвинуть предположение, что некоторые подходы консервативной терапии атеросклероза могут быть полезны для продления сроков функционирования биопротезов клапанов.

Об авторе

А. Е. Костюнин
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

Костюнин Александр Евгеньевич

Адрес: 650002, Кемерово, Сосновый бульвар, 6.

Тел. (900) 108-10-97

 



Список литературы

1. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017; 38 (36): 2739–2791. doi: 10.1093/eurheartj/ehx391.

2. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Fleisher LA et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology American Heart Association task force on clinical practice guidelines. Circulation. 2017; 135 (25): e1159–e1195. doi: 10.1161/CIR.0000000000000503.

3. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 63 (22): 2438–2488. doi: 10.1016/j.jacc.2014.02.537.

4. Bax JJ, Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC Cardiovasc Interv. 2017; 10 (4): 388–390. doi: 10.1016/j.jcin.2017.01.017.

5. Fiedler AG, Tolis GJr. Surgical treatment of valvular heart disease: overview of mechanical and tissue prostheses, advantages, disadvantages, and implications for clinical use. Curr Treat Options Cardiovasc Med. 2018; 20 (1): 7. doi: 10.1007/s11936-018-0601-7.

6. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009; 119 (7): 1034–1048. doi: 10.1161/CIRCULATIONAHA.108.778886.

7. Zilla P, Brink J, Human P, Bezuidenhout D. Prosthetic heart valves: catering for the few. Biomaterials. 2008; 29 (4): 385–406. doi: 10.1016/j.biomaterials.2007.09.033.

8. Бокерия ЛА, Милиевская ЕБ, Куздоева ЗФ, Прянишникова ВВ. Сердечно-сосудистая хирургия – 2017. Болезни и врожденные аномалии системы кровообращения. М.: НМИЦССХ им. Бакулева МЗ РФ, 2018. 252.

9. Manji RA, Lee W, Cooper DKC. Xenograft bioprosthetic heart valves: past, present and future. Int J Surg. 2015; 23 (PtB): 280–284. doi: 10.1016/j.ijsu.2015.07.009.

10. Tillquist MN, Maddox TM. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement. Patient Prefer Adherence. 2011; 5: 91–99. doi: 10.2147/PPA.S16420.

11. Capodanno D, Petronio AS, Prendergast B, Eltchaninoff H, Vahanian A, Modine T et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017; 38 (45): 3382–3390. doi: 10.1093/eurheartj/ehx303.

12. Dvir D, Bourguignon T, Otto CM, Hahn RT, Rosenhek R, Webb JG et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137 (4): 388– 399. doi: 10.1161/CIRCULATIONAHA.117.030729.

13. Schoen FJ, Levy RJ. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res. 1999; 47 (4): 439–465. doi: 10.1002/(SICI)1097- 4636(19991215)47:43.0.CO;2-O.

14. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005; 79 (3): 1072–1080. doi: 10.1016/j.athoracsur.2004.06.033.

15. Simionescu DT. Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther. 2004; 4 (12): 1971–1985. doi: 10.1517/14712598.4.12.1971.

16. Rodriguez-Gabella T, Voisine P, Puri R, Pibarot P, Rodés-Cabau J. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J Am Coll Cardiol. 2017; 70 (8): 1013–1028. doi: 10.1016/j. jacc.2017.07.715.

17. Manji RA, Ekser B, Menkis AH, Cooper DKC. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21 (1): 1–10. doi: 10.1111/xen.12080.

18. Барбараш ЛС, Рогулина НВ, Рутковская НВ, Овчаренко ЕА. Механизмы развития дисфункций биологических протезов клапанов сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7 (2): 10–24.

19. Cote N, Pibarot P, Clavel MA. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr Opin Cardiol. 2017; 32 (2): 123–129. doi: 10.1097/HCO.0000000000000372.

20. Head SJ, Çelik M, Kappetein AP. Mechanical versus bioprosthetic aortic valve replacement. Eur Heart J. 2017; 38 (28): 2183–2191. doi: 10.1093/eurheartj/ ehx141.

21. Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016; 2: 16006. doi: 10.1038/nrdp.2016.6.

22. Rajamannan NM. Mechanisms of aortic valve calcification: the LDL-density-radius theory: a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010; 298 (1): H5–15. doi: 10.1152/ajpheart.00824.2009.

23. Briand M, Pibarot P, Després JP, Voisine P, Dumesnil JG, Dagenais F et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation. 2006; 114 (1 Suppl): I512–I517. doi: 10.1161/CIRCULATIONAHA.105.000422.

24. Farivar RS, Cohn LH. Hypercholesterolemia is a risk factor for bioprosthetic valve calcification and explantation. J Thorac Cardiovasc Surg. 2003; 126 (4): 969– 975. doi: 10.1016/s0022-5223(03)00708-6.

25. Lorusso R, Gelsomino S, Luca F, De Cicco G, Bille G, Carella R et al. Type 2 diabetes mellitus is associated with faster degeneration of bioprosthetic valve: results from a propensity score-matched Italian multicenter study. Circulation. 2012; 125 (4): 604–614. doi: 10.1161/ CIRCULATIONAHA.111.025064.

26. Nitsche C, Kammerlander AA, Knechtelsdorfer K, Kraiger JA, Goliasch G, Dona C et al. Determinants of bioprosthetic aortic valve degeneration. JACC Cardiovasc Imaging. 2020 Feb; 13 (2 Pt 1): 345–353. doi: 10.1016/j. jcmg.2019.01.027. [Epub 2019 Mar 13].

27. Nollert G, Miksch J, Kreuzer E, Reichart B. Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg. 2003; 126 (4): 965–968. doi: 10.1016/s0022- 5223(02)73619-2.

28. Гуляев НИ, Варавин НА, Коровин АЕ, Кузнецов ВВ, Яковлев ВВ, Гордиенко АВ. Современные аспекты патогенеза кальциноза аортальных полулуний (обзор литературы). Вестник СПбГУ. 2016; 3: 20–34.

29. Kostyunin AE, Yuzhalin AE, Ovcharenko EA, Kutikhin AG. Development of calcific aortic valve disease: do we know enough for new clinical trials? J Mol Cell Cardiol. 2019; 132: 189–209. doi: 10.1016/j. yjmcc.2019.05.016.

30. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014; 237 (1): 208–219. doi: 10.1016/j.atherosclerosis.2014.09.001.

31. Parisi V, Leosco D, Ferro G, Bevilacqua A, Pagano G, de Lucia C et al. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutr Metab Cardiovasc Dis. 2015; 25 (6): 519–525. doi: 10.1016/j. numecd.2015.02.001.

32. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016; 27 (3): 209–215. doi: 10.1097/MOL.0000000000000302.

33. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011; 17 (11): 1410–1422. doi: 10.1038/nm.2538.

34. Bottio T, Thiene G, Pettenazzo E, Ius P, Bortolotti U, Rizzoli G et al. Hancock II bioprosthesis: a glance at the microscope in mid-long-term explants. J Thorac Cardiovasc Surg. 2003; 126 (1): 99–105. doi: 10.1016/s0022- 5223(03)00131-4.

35. Butany J, Zhou T, Leong SW, Cunningham KS, Thangaroopan M, Jegatheeswaran A et al. Inflammation and infection in nine surgically explanted Medtronic Freestyle stentless aortic valves. Cardiovasc Pathol. 2007; 16 (5): 258–267. doi: 10.1016/j.carpath.2007.01.009.

36. Grabenwöger M, Fitzal F, Gross C, Hutschala D, Böck P, Brucke P et al. Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis. 2000; 9 (1): 104–111. PMID: 10678382.

37. Lepidi H, Casalta JP, Fournier PE, Habib G, Collart F, Raoult D. Quantitative histological examination of bioprosthetic heart valves. Clin Infect Dis. 2006; 42 (5): 590–596. doi: 10.1086/500135.

38. Manji RA, Hara H, Cooper DK. Characterization of the cellular infiltrate in bioprosthetic heart valves explanted from patients with structural valve deterioration. Xenotransplantation. 2015; 22 (5): 406–407. doi: 10.1111/ xen.12187.

39. Nair V, Law KB, Li AY, Phillips KR, David TE, Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc Pathol. 2012; 21 (3): 158–168. doi: 10.1016/j.carpath.2011.05.003.

40. Sakaue T, Nakaoka H, Shikata F, Aono J, Kurata M, Uetani T et al. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol Open. 2018; 7 (8): bio034009. doi: 10.1242/bio.034009.

41. Shetty R, Pibarot P, Audet A, Janvier R, Dagenais F, Perron J et al. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest. 2009; 39 (6): 471–480. doi: 10.1111/j.1365- 2362.2009.02132.x.

42. Mahmut A, Mahjoub H, Boulanger MC, Fournier D, Després JP, Pibarot P, Mathieu P. Lp-PLA2 is associated with structural valve degeneration of bioprostheses. Eur J Clin Invest. 2014; 44 (2): 136–145. doi: 10.1111/ eci.12199.

43. Abd-Elrahman I, Meir K, Kosuge H, Ben-Nun Y, Weiss Sadan T, Rubinstein C et al. Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke. 2016; 47 (4): 1101–1108. doi: 10.1161/STROKEAHA.115.011573.

44. Bühling F, Reisenauer A, Gerber A, Krüger S, Weber E, Brömme D et al. Cathepsin K – a marker of macrophage differentiation? J Pathol. 2001; 195 (3): 375–382. doi: 10.1002/path.959.

45. Kessenbrock K, Brown M, Werb Z. Measuring matrix metalloproteinase activity in macrophages and polymorphonuclear leukocytes. Curr Protoc Immunol. 2011; Chapter 14: Unit 14.24. doi: 10.1002/0471142735. im1424s93.

46. Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Brömme D. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J Biol Chem. 2004; 279 (35): 36761–36770. doi: 10.1074/jbc. M403986200.

47. Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol. 2017; 816: 93–106. doi: 10.1016/j.ejphar.2017.09.007.

48. Simionescu A, Simionescu DT, Deac RF. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovasc Pathol. 1996; 5 (6): 323–332. PMID: 25851789.

49. Ponath V, Kaina B. Death of monocytes through oxidative burst of macrophages and neutrophils: killing in trans. PLoS One. 2017; 12 (1): e0170347. doi: 10.1371/ journal.pone.0170347.

50. ChristianAJ, Lin H,Alferiev IS,Connolly JM, Ferrari G, Hazen SL et al. The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials. 2014; 35 (7): 2097–2102. doi: 10.1016/j.biomaterials.2013.11.045.

51. Lee S, Levy RJ, Christian AJ, Hazen SL, Frick NE, Lai EK et al. Calcification and oxidative modifications are associated with progressive bioprosthetic heart valve dysfunction. J Am Heart Assoc. 2017; 6 (5): e005648. doi: 10.1161/JAHA.117.005648.

52. Rittling SR. Osteopontin in macrophage function. Expert Rev Mol Med. 2011; 13: e15. doi: 10.1017/ S1462399411001839.

53. Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016; 52–54: 78–87. doi: 10.1016/j.matbio.2016.02.001.

54. New SE, Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 2013; 33 (8): 1753–1758. doi: 10.1161/ ATVBAHA.112.300128.

55. New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013; 113 (1): 72–77. doi: 10.1161/CIRCRESAHA.113.301036.

56. Srivatsa SS, Harrity PJ, Maercklein PB, Kleppe L, Veinot J, Edwards WD et al. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest. 1997; 99 (5): 996–1009. doi: 10.1172/JCI119265.

57. Mohler ER 3rd, Adam LP, McClelland P, Graham L, Hathaway DR. Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol. 1997; 17 (3): 547–552. doi: 10.1161/01.atv.17.3.547.

58. Pohjolainen V, Taskinen P, Soini Y, Rysä J, Ilves M, Juvonen T et al. Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation. Hum Pathol. 2008; 39 (11): 1695–1701. doi: 10.1016/j.humpath.2008.04.015.

59. Ardans JA, Economou AP, Martinson JM Jr, Zhou M, Wahl LM. Oxidized low-density and high-density lipoproteins regulate the production of matrix metalloproteinase-1 and -9 by activated monocytes. J Leukoc Biol. 2002; 71 (6): 1012–1018. PMID: 12050187.

60. Huang Z, Meng S, Wang L, Wang Y, Chen T, Wang C. Suppression of oxLDL-induced MMP-9 and EMMPRIN expression by berberine via inhibition of NF-κB activation in human THP-1 macrophages. Anat Rec (Hoboken). 2012; 295 (1): 78–86. doi: 10.1002/ar.21489.

61. Sanda GM, Deleanu M, Toma L, Stancu CS, Simionescu M, Sima AV. Oxidized LDL-exposed human macrophages display increased MMP-9 expression and secretion mediated by endoplasmic reticulum stress. J Cell Biochem. 2017; 118 (4): 661–669. doi: 10.1002/ jcb.25637.

62. Yang K, Liu X, Liu Y, Wang X, Cao L, Zhang X et al. DCSIGN and Toll-like receptor 4 mediate oxidized lowdensity lipoprotein-induced inflammatory responses in macrophages. Sci Rep. 2017; 7 (1): 3296. doi: 10.1038/ s41598-017-03740-7.

63. Ye J, Wang C, Wang D, Yuan H. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp Cell Res. 2018; 369 (2): 348–355. doi: 10.1016/j.yexcr.2018.05.039.

64. Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res. 2009; 104 (2): 210–218. doi: 10.1161/CIRCRESAHA.108.181040.

65. Nsaibia MJ, Mahmut A, Mahjoub H, Dahou A, Bouchareb R, Boulanger MC et al. Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart. 2016; 102 (23): 1915–1921. doi: 10.1136/heartjnl-2016-309541.

66. Mahjoub H, Mathieu P, Sénéchal M, Larose E, Dumesnil J, Després JP et al. ApoB/ApoA-I ratio is associated with increased risk of bioprosthetic valve degeneration. J Am Coll Cardiol. 2013; 61 (7): 752–761. doi: 10.1016/j.jacc.2012.11.033.

67. Salaun E, Mahjoub H, Dahou A, Mathieu P, Larose É, Després JP et al. Hemodynamic deterioration of surgically implanted bioprosthetic aortic valves. J Am Coll Cardiol. 2018; 72 (3): 241–251. doi: 10.1016/j. jacc.2018.04.064.

68. Wilensky RL, Macphee CH. Lipoprotein-associated phospholipase A(2) and atherosclerosis. Curr Opin Lipidol. 2009; 20 (5): 415–420. doi: 10.1097/ MOL.0b013e3283307c16.

69. Akahori H, Tsujino T, Naito Y, Matsumoto M, Lee-Kawabata M, Ohyanagi M et al. Intraleaflet haemorrhage is associated with rapid progression of degenerative aortic valve stenosis. Eur Heart J. 2011; 32 (7): 888–896. doi: 10.1093/eurheartj/ehq479.

70. Morvan M, Arangalage D, Franck G, Perez F, CattanLevy L, Codogno I et al. Relationship of iron deposition to calcium deposition in human aortic valve leaflets. J Am Coll Cardiol. 2019; 73 (9): 1043–1054. doi: 10.1016/j.jacc.2018.12.042.

71. Stam OCG, Daemen MJAP, van Rijswijk JW, de Mol BAJM, van der Wal AC. Intraleaflet hemorrhages are a common finding in symptomatic aortic and mitral valves. Cardiovasc Pathol. 2017; 30: 12–18. doi: 10.1016/j.carpath.2017.06.002.

72. Deutsch MA, Gummert JF. Intraleaflet hemorrhage and iron-dependent pathomechanisms in calcific aortic valve disease: epiphenomenon or major actor? J Am Coll Cardiol. 2019; 73 (9): 1055–1058. doi: 10.1016/j. jacc.2018.12.041.

73. Lee S, Ferrari G, Levy RJ. Abstract 14677: oxidative damage in failed clinical bioprosthetic heart valve explants. Circulation. 2015; 132 (3): A14677.

74. Skowasch D, Schrempf S, Preusse CJ, Likungu JA, Welz A, Lüderitz B et al. Tissue resident C reactive protein in degenerative aortic valves: correlation with serum C reactive protein concentrations and modification by statins. Heart. 2006; 92 (4): 495–498. doi: 10.1136/ hrt.2005.069815.

75. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017; 19 (11): 42. doi: 10.1007/s11883-017-0678-6.

76. Костюнин АЕ, Овчаренко ЕА, Барбараш ОЛ. Ренинангиотензин-альдостероновая система как потенциальная мишень для терапии пациентов с кальцинирующим аортальным стенозом: обзор литературы. Кардиология. 2019; 59 (11S): 4–17.

77. Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. The Journal of Medical Investigation. 2010; 57 (1–2): 12–25. doi: 10.2152/jmi.57.12.

78. Zhao Y, Hasse S, Zhao C, Bourgoin SG. Targeting the autotaxin – lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol. 2019; 164: 74–81. doi: 10.1016/j.bcp.2019.03.035.

79. Armiger LC. Viability studies of human valves prepared for use as allografts. Ann Thorac Surg. 1995; 60 (2 Suppl): S118–S121. doi: 10.1016/0003-4975(95)00217-9.

80. Oei FB, Stegmann AP, van der Ham F, Zondervan PE, Vaessen LM, Baan CC et al. The presence of immune stimulatory cells in fresh and cryopreserved donor aortic and pulmonary valve allografts. J Heart Valve Dis. 2002; 11 (3): 315–325. PMID: 12056721.

81. Мухамадияров РА, Рутковская НВ, Кокорин СГ, Одаренко ЮН, Мильто ИВ, Барбараш ЛС. Типирование клеток биопротезов клапанов сердца, эксплантированных вследствие развития кальций-ассоциированных дисфункций. Бюллетень сибирской медицины. 2018; 17 (4): 94–102.

82. Мухамадияров РА, Рутковская НВ, Сидорова ОД, Барбараш ЛС. Исследование клеточного состава кальцинированных биопротезов клапанов сердца. Вестник Российской академии медицинских наук. 2015; 70 (6): 662–668.

83. Костюнин АЕ, Овчаренко ЕА, Клышников КЮ. Современное понимание механизмов структурной дегенерации биопротезов клапанов сердца. Российский кардиологический журнал. 2018; 11: 145–152.

84. Steinmetz M, Skowasch D, Wernert N, Welsch U, Preusse CJ, Welz A et al. Differential profile of the OPG/ RANKL/RANK-system in degenerative aortic native and bioprosthetic valves. J Heart Valve Dis. 2008; 17 (2): 187–193. PMID: 18512489.

85. Костюнин АЕ, Резвова МА. Роль остаточных ксеноантигенов в дегенерации ксеногенных биопротезов клапанов сердца. Иммунология. 2019; 40 (4): 56–63.

86. Bibevski S, Ruzmetov M, Fortuna RS, Turrentine MW, Brown JW, Ohye RG. Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann Thorac Surg. 2017; 103 (3): 869–874. doi: 10.1016/j.athoracsur.2016.07.068.

87. Hoekstra F, Knoop C, Vaessen L, Wassenaar C, Jutte N, Bos E et al. Donor-specific cellular immune response against human cardiac valve allografts. J Thorac Cardiovasc Surg. 1996; 112 (2): 281–286. doi: 10.1016/ S0022-5223(96)70250-7.

88. Hogan P, Duplock L, Green M, Smith S, Gall KL, Frazer IH et al. Human aortic valve allografts elicit a donor-specific immune response. J Thorac Cardiovasc Surg. 1996; 112 (5): 1260–1267. doi: 10.1016/S0022- 5223(96)70139-3.

89. Colli A, Gherli T, Mestres CA, Pomar JL. Degeneration of native and tissue prosthetic valve in aortic position: do statins play an effective role in prevention? Int J Cardiol. 2007; 116 (2): 144–152. doi: 10.1016/j. ijcard.2006.03.047.

90. Antonini-Canterin F, Popescu BA, Zuppiroli A, Nicolosi GL. Are statins effective in preventing bioprosthetic aortic valve failure? A need for a prospective, randomized trial. Ital Heart J. 2004; 5 (2): 85–88. PMID: 15086137.

91. Antonini-Canterin F, Zuppiroli A, Popescu BA, Granata G, Cervesato E, Piazza R et al. Effect of statins on the progression of bioprosthetic aortic valve degeneration. Am J Cardiol. 2003; 92 (12): 1479–1482. doi: 10.1016/j.amjcard.2003.08.066.

92. Kulik A, Masters RG, Bédard P, Hendry PJ, Lam BK, Rubens FD et al. Postoperative lipid-lowering therapy and bioprosthesis structural valve deterioration: justification for a randomised trial? Eur J Cardiothorac Surg. 2010; 37 (1): 139–144. doi: 10.1016/j.ejcts.2009.06.051.

93. Gilmanov D, Bevilacqua S, Mazzone A, Glauber M. Do statins slow the process of calcification of aortic tissue valves? Interact Cardiovasc Thorac Surg. 2010; 11 (3): 297–301. doi: 10.1510/icvts.2009.230920.

94. Manji RA, Zhu LF, Nijjar NK, Rayner DC, Korbutt GS, Churchill TA et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006; 114 (4): 318–327. doi: 10.1161/CIRCULATIONAHA.105.549311.

95. Eishi K, Ishibashi-Ueda H, Nakano K, Kosakai Y, Sasako Y, Kobayashi J et al. Calcific degeneration of bioprosthetic aortic valves in patients receiving steroid therapy. J Heart Valve Dis. 1996; 5 (6): 668–672. PMID: 8953446.

96. Shimazaki Y, Kuraoka S, Takeda F, Watanabe T, Inui K. Mitral valve re-replacement for impaired bioprosthesis after 19 years in a patient undergoing steroid treatment. J Heart Valve Dis. 2003; 12 (1): 45–47. PMID: 12578334.

97. Zhang R, Wang Y, Chen L, Wang R, Li C, Li X et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomater. 2018; 72: 196–205. doi: 10.1016/j.actbio.2018.03.055.

98. Perota A, Lagutina I, Duchi R, Zanfrini E, Lazzari G, Judor JP et al. Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation. 2019; 26 (5): e12524. doi: 10.1111/xen.12524.

99. Rahmani B, McGregor C, Byrne G, Burriesci G. A durable porcine pericardial surgical bioprosthetic heart valve: a proof of concept. J Cardiovasc Transl Res. 2019; 12 (4): 331–337. doi: 10.1007/s12265-019-09868-3.

100. Smood B, Hara H, Cleveland DC, Cooper DKC. In search of the ideal valve: optimizing genetic modifications to prevent bioprosthetic degeneration. Ann Thorac Surg. 2019; 108 (2): 624–635. doi: 10.1016/j.athoracsur.2019.01.054.


Дополнительные файлы

1. Сопроводительное письмо
Тема
Тип Исследовательские инструменты
Скачать (664KB)    
Метаданные
2. Информация об авторе
Тема
Тип Исследовательские инструменты
Скачать (26KB)    
Метаданные
3. Статья (с заголовком)
Тема
Тип Исследовательские инструменты
Скачать (226KB)    
Метаданные
4. Справка антиплагиат
Тема
Тип Исследовательские инструменты
Скачать (581KB)    
Метаданные
5. Рецензия
Тема
Тип Исследовательские инструменты
Скачать (123KB)    
Метаданные

Рецензия

Для цитирования:


Костюнин А.Е. Структурная дегенерация биологических протезов клапанов сердца: имеются ли общие механизмы с атеросклерозом и кальцинирующим аортальным стенозом? Вестник трансплантологии и искусственных органов. 2022;24(1):96-106. https://doi.org/10.15825/1995-1191-2022-1-96-106

For citation:


Kostyunin A.E. Structural valve degeneration: are there common mechanisms with atherosclerosis and calcific aortic stenosis? Russian Journal of Transplantology and Artificial Organs. 2022;24(1):96-106. (In Russ.) https://doi.org/10.15825/1995-1191-2022-1-96-106

Просмотров: 61


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)