Оценка биоэнергетики сокращения миокарда в условиях механической поддержки кровообращения
https://doi.org/10.15825/1995-1191-2019-1-71-76
Аннотация
Цель: разработать новый модифицированный индекс для оценки биоэнергетики сокращения сердца в условиях сердечной недостаточности при механической поддержке кровообращения. Провести оценку биоэнергетики сердца при использовании систем обхода левого желудочка сердца с использованием насосов непульсирующего потока. Рассмотреть принципиальное преимущество насосов непульсирующего потока с генерацией пульсирующего потока в режиме кардиосинхронизированной сопульсации перед режимом контрпульсации.
Об авторах
Г. П. ИткинРоссия
123182, Москва, ул. Щукинская, д. 1.
Тел. (916) 129-78-33.
А. С. Бучнев
Россия
Москва
А. П. Кулешов
Россия
Москва
А. И. Сырбу
Россия
кафедра физики живых систем
Москва
Список литературы
1. Uriel N, Sayer G, Annamalai S, Kapur NK, Burkhoff D. Mechanical Unloading in Heart Failure. J Am Coll Cardiol. 2018 Jul; 31 (72): 569–580. doi: 10.1016/j.jacc.2018.05.038.
2. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015; 34 (12): 1495–1504. doi: 10.1016/j.healun.2015.10.003.
3. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009; 361: 2241–2251. doi: 10.1056/NEJMoa0909938.
4. Crow S, John R, Boyle A, Shumway S, Liao K, ColvinAdams M et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009; 137: 208–215. doi: 10.1016/j.jtcvs.2008.07.032.
5. Zamarripa Garcia MA, Enriquez LA, Dembitsky W, MayNewman K. The Effect of Aortic Valve Incompetence on the Hemodynamics of a Continuous Flow Ventricular Assist Device in a Mock Circulation. ASAIO Journal. 2008; 54: 237–244. doi: 10.1097/MAT.0b013e31816a309b.
6. Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Defining pulsatility during continuous-flow ventricular assist device support. J Heart Lung Transplant. 2013; 32: 581–587. doi: 10.1097/MAT.0b013e31816a309b.
7. Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Feasibility of Pump Speed Modulation for Restoring Vascular Pulsatility with Rotary Blood Pumps. ASAIO J. 2015 Sep-Oct; 61 (5): 526–532. doi: 10.1097/MAT.0000000000000262.
8. Pirbodaghi T, Axiak S, Weber A, Gempp T, Vandenberghe S. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J Thorac Cardiovasc Surg. 2012; 144: 970–977. doi: 10.1016/j.jtcvs.2012.02.015.
9. Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar; 32 (3): 314–322. doi: 10.1161/01.res.32.3.314.
10. Kishimoto S, Date K, Arakawa M, Takewa Y, Nishimura T, Tsukiya T et al. Influence of a novel electrocardiogram-synchronized rotational-speed-change system of an implantable continuous-flow left ventricular assist device (EVAHEART) on hemolytic performance. J Artif Organs. 2014; 17: 373–377. doi: 10.1007/s10047-014-0787-8.
11. Bartoli CR, Sherwood LC, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD et al. Hemodynamic Responses to Continuous versus Pulsatile Mechanical Unloading of the Failing Left Ventricle. ASAIO Journal. 2010; 56: 410–416. doi: 10.1097/mat.0b013e3181e7bf3c.
12. Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS et al. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artificial Organs. 2010; 34: 529–536. doi: 10.1111/j.1525-1594.2010.00996.x.
13. Evans CL, Matsuoka Y. Effect of various mechanical conditionsbof gaseous metabolism and efficiency of mammalian heart. J Physiol. 1915; 49: 378–405. doi: 10.1113/jphysiol.1915.sp001716.
14. Monroe RG, French GN. Left ventricular pressurevolume relationship and myocardial oxygen consuvption in isolated heart. Circ Res. 1961; 9: 362–374. doi: 10.1161/01.res.9.2.362.
15. Parissis HL, Graham V, Lampridis S, Lau M, Hooks G. IABP: history-evolution-pathophysiology-indications: what we need to know. J Cardiothorac Surg. 2016; 11: 122–127. doi: 10.1186/s13019-016-0513-0.
16. Lewartowski B, Michałowski J, Sedek G, Kryńska E, Wasilewska-Dziubińska E. Directly measured tensiontime index as a correlate of myocardial oxygen consumption. Eur J Cardiol. 1980; 11: 61–70. PMID: 7363921.
17. Gordon DG. The physics of left ventricular ejection and its implications for muscle mechanics. Eur J Cardiol. 1976; 4: 87–95. PMID: 1278222.
18. Kern MJ, Aguirre FV, Caraccido EA et al. Hemodynamic effects of new intra-aortic balloon counterpulsation timing methods in patients: a multicenter evaluation. Am Heart J. 1999; 137: 1129–1136.
Рецензия
Для цитирования:
Иткин Г.П., Бучнев А.С., Кулешов А.П., Сырбу А.И. Оценка биоэнергетики сокращения миокарда в условиях механической поддержки кровообращения. Вестник трансплантологии и искусственных органов. 2019;21(1):71-76. https://doi.org/10.15825/1995-1191-2019-1-71-76
For citation:
Itkin G.P., Buchnev A.S., Kuleshov A.P., Syrbu A.I. The assessment bioenergy of cardiac contraction in the conditions of mechanical support circulation. Russian Journal of Transplantology and Artificial Organs. 2019;21(1):71-76. (In Russ.) https://doi.org/10.15825/1995-1191-2019-1-71-76