Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Высокая проницаемость мембран для гемодиализа: плюсы и минусы

https://doi.org/10.15825/1995-1191-2018-4-100-106

Полный текст:

Аннотация

Современные технологии производства мембран для гемодиализа позволили существенно повысить их биосовместимость и проницаемость. Новые разновидности мембран – с высокой и средней точками отсечения по молекулярной массе просеивающихся веществ – позволяют эффективно удалять не только средние молекулы, такие как β2 -микроглобулин, но и более размерные молекулы. Высокая проницаемость современных диализных мембран и широкое внедрение конвективных методик сопряжены с повышенной потерей альбумина в ходе сеансов лечения. Какой уровень таких потерь можно считать приемлемым и где находится точка равновесия между преимуществами повышенного выведения уремических соединений и потенциальной опасностью избыточного просеивания альбумина – эти вопросы требуют дальнейших исследований.

Об авторах

А. Г. Строков
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


Я. Л. Поз
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

123182, Москва, ул. Щукинская, д. 1
Тел. (916) 606-77-16



Список литературы

1. Kolff W, Berk H. The artificial kidney: a dialyzer with a great area. Acta Med Scand. 1944; 117: 121–134. PMID: 9402100.

2. Kiil F. Development of a parallel-flow artificial kidney in plastics. Acta Chir Scand. 1960; Suppl 253: 142–150. PMID: 14409028.

3. Lipps BJ, Stewart RD, Perkins HA, Holmes GW, McLain EA, Rolfs MR, Oja PD. The hollow fiber artificial kidney. Trans Am Soc Artif Intern Organs. 1967; 13: 200–207.

4. Hakim RM.Clinical implications of hemodialysis membrane bioincompatibility. Kidney Int.1993; 44: 484–494. PMID: 8231020.

5. Clark WR, Gao D, Ronco C. Membranes for dialysis: composition, structure, and function. Contrib Nephrol. 2002; 137: 70–77. PMID: 12101993.

6. Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006; 17 (2): 546–555. doi: 10.1681/ASN.2005020132.

7. Okuno S, Ishimura E, Kohno K, Fujino­Katoh Y, Maeno Y, Yamakawa T et al. Serum β2 -microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrol Dial Transplant. 2009; 24: 571–577. doi: 10.1093/ndt/gfn521.

8. European Best Practice Guidelines for Haemodialysis II. 2 Haemodialysis dose quantification: middle molecules. Nephrol Dial Transplant. 2002; 17, Suppl. 7: 21–23. doi: 10.1093/ndt/17.suppl_7.21.

9. Roumelioti M­E, Trietley G, Nolin TD, Ng Y­H, Xu Z, Alaini A et al. Beta-2 microglobulin clearance in highflux dialysis and convective dialysis modalities: a metaanalysis of published studies. Nephrol Dial Transplant. 2018; 33: 1025–1039. doi: 10.1093/ndt/gfx311.

10. Campistol JM., Torregrosa JV, Ponz E, Fenollosa B. β2 -microglobulin removal by hemodialysis polymethylmetacrylate membranes. Contrib Nephrol. 1998; 125: 76–85. PMID: 9895432.

11. Tattersall JE, Ward RA.EUDIAL group. Online hemodiafiltration: definition, dose quantification, and safety revisited. Nephrol Dial Transplant.2013; 28: 542–550. doi: 10.1093/ndt/gfs530.

12. Wizemann V, Lotz C, Techert F, Utholff S. On-line haemodiafiltration versus low-flux haemodialysis. A prospective randomized study. Nephrol Dial Transplant. 2000; 15: 43–48. PMID: 10737166.

13. Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015; 88 (5): 1108–1116. doi: 10.1038/ki.2015.139.

14. Neirynck N, Vanholder R, Schepers E, Eloot S, Pletinck A, Glorieux G. An update on uremic toxins. Int Urol Nephrol.2013; 45: 139–150. doi: 10.1007/s11255-012-0258-1.

15. Boschetti­de­Fierro A, Voigt M, Storr M, Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs. 2013; 36: 455–463. doi: 10.5301/ijao.5000220.

16. Boschetti­de­Fierro A, Voigt M, Storr M, Krause B. MCO Membranes: Enhanced Selectivity in High-Flux Class. Sci Rep. 2015; 5: 18448. doi: 10.1038/srep18448.

17. Kirsch AH, Lyko R, Nilsson LG, Beck W, Amdahl M, Lechner P et al. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol Dial Transplant. 2017; 32 (1): 165–172. doi: 10.1093/ndt/gfw310.

18. Zickler D, Schindler R, Willy K, Martus P, Pawlak M, Storr M et al. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients – A Randomized Controlled Clinical Trial. PLoS One. 2017 Jan 13; 12 (1): e0169024. doi: 10.1371/journal.pone.0169024.

19. Fiore GB, Guadagni G, Lupi A, Ricci Z, Ronco C. A new semiempirical mathematical model for prediction of internal filtration in hollow fiber hemodialyzers. Blood Purif. 2006; 24: 555–568 doi: 10.1159/000097079.

20. Ronco C. The Rise of Expanded Hemodialysis. Blood Purif. 2017; 44: I–VIII. doi: 10.1159/000476012.

21. Maduell F, Moreso F, Pons M, Ramos R, Mora­Macià J, Carreras J et al. ESHOL Study Group. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013; 24: 487–497. doi: 10.1681/ASN.2012080875.

22. Ikizler TA, Flakoll PJ, Parker RA, Hakim RM. Amino acid and albumin losses during hemodialysis. Kidney Int. 1994; 46: 830–837. PMID: 7996804.

23. Kaysen GA, Dubin JA, Müller HG, Mitch WE, Rosales LM, Levin NW. Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients. Kidney Int. 2002; 61: 2240–2249. doi: 10.1046/j.1523-1755.2002.00076.x.

24. Kneis C, Beck W, Boenisch O, Klefisch F, Deppisch R, Zickler D et al. Elimination of middle-sized uremic solutes with high-flux and high-cut-off membranes: A randomized in vivostudy. Blood Purif. 2014; 36: 287–294. doi: 10.1159/000356224.

25. Tsuchida K, Minakuchi J.Albumin loss under the use of the high-performance membrane. Contrib Nephrol. 2011; 173: 76–83. doi: 10.1159/000328957.

26. Fiedler R, Neugebauer F, Ulrich C, Wienke A, Gromann C, Storr M et al. Randomized controlled pilot study of 2 weeks’ treatment with high cutoff membrane for hemodialysis patients with elevated c-reactive protein. Artif Organs. 2012; 36: 886–893. doi: 10.1111/j.1525-1594.2012.01479.x.

27. Nagai K, Tsuchida K, Ishihara N, Naoto Minagawa N, Ichien G, Yamada S et al. Implications of albumin leakage for survival in maintenance hemodialysis patients: a 7-year observational study. Ther Apher Dial. 2017; 21: 378–386. doi: 10.1111/1744-9987.12526.

28. Ahrenholz PG, Winkler RE, Michelsen A, Lang DA, Bowry SK. Dialysis membrane-dependent removal of middle molecules during hemodiafiltration: the beta2-microglobulin/ albumin relationship. Clin Nephrol. 2004; 62: 21–28. PMID: 15267009.

29. Maduell F, Arias­Guillen M, Fontseré N, Ojeda R, Rico N, Vera M et al. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 2014; 37: 125–130. doi: 10.1159/000358214.

30. Fournier A, Birmele B, Francois M, Prat L, Halimi JM. Factors associated with albumin loss in post-dilution hemodiafiltration. Int J Artif Organs. 2015; 38: 76–82. doi: 10.5301/ijao.5000389.

31. Vega A, Quiroga B, Abad S, Aragoncillo I, Arroyo D, Panizo N et al. Albumin leakage in online hemodiafiltration, more convective transport, more losses? Ther Apher Dial. 2015; 19: 267–271. doi: 10.1111/1744-9987.12247.

32. Gayrard N, Ficheux A, Duranton F, Guzman C, Szwarc I, Vetromile F et al. Correction: Consequences of increasing convection onto patient care and protein removal in hemodialysis. PLoS One. 2018; 13 (1): e0190761. doi: 10.1371/journal.pone.0190761.

33. Yamashita AC, Sakurai K. Clinical effect of pre-dilution hemodiafiltration based on the permeation of the hemodiafilter. Contrib Nephrol. 2015; 185: 1–7. doi: 10.1159/000380964.

34. Potier J, Le Roy F, Faucon JP, Besselièvre T, Renaudineau E, Farquet C et al. Elevated removal of middle molecules without significant albumin loss with mixeddilution hemodiafiltration for patients unable to provide sufficient blood flow rates. Blood Purif. 2013; 36: 78–83. doi: 10.1159/000351527.

35. Kim ST, Yamamoto C, Taoka M, Takasugi M. Programmed filtration, a new method for removing large molecules and regulating albumin leakage during hemodiafiltration treatment. Am J Kidney Dis. 2001; 38: S220–S223. PMID: 11576960.

36. Pedrini LA, Cozzi G, Faranna P, Mercieri A, Ruggiero P, Zerbi S et al. Transmembrane pressure modulation in high-volume mixed hemodiafiltration to optimize efficiency and minimize protein loss. Kidney Int. 2006; 69: 573–579. doi: 10.1038/sj.ki.5000110.


Для цитирования:


Строков А.Г., Поз Я.Л. Высокая проницаемость мембран для гемодиализа: плюсы и минусы. Вестник трансплантологии и искусственных органов. 2018;20(4):100-106. https://doi.org/10.15825/1995-1191-2018-4-100-106

For citation:


Strokov A.G., Poz I.L. High dialysis membranes permeability: pluses and minuses. Russian Journal of Transplantology and Artificial Organs. 2018;20(4):100-106. (In Russ.) https://doi.org/10.15825/1995-1191-2018-4-100-106

Просмотров: 114


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)