Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

A case report of bioprosthetic valve dysfunction after tricuspid valve replacement in a preschool patient: the contribution of pannus and calcification

https://doi.org/10.15825/1995-1191-2018-3-45-53

Abstract

Aim. To assess the contribution of pannus and calcification to the development of bioprosthetic valve dysfunction after tricuspid valve replacement in a pediatric patient.

Materials and methods. A 3-month-old patient presented with tricuspid valve  dysplasia and grade 4 tricuspid insufficiency underwent tricuspid valve  replacement with the bioprosthesis «PeriCor» (ZAO «NeoKor», Russian  Federation). The patient at the age of 6 years required a redo tricuspid valve  replacement 5 years 8 months after initial surgery. Degenerative changes of the  dysfunctional bioprosthetic valve explanted from the tricuspid position were  assessed using macroscopic description and light microscopy. Cellular  composition, the presence of bacteria, colocalization of calcifications with  recipient cells were analyzed. The distribution of calcifications and their volume  in the biomaterial tissue were estimated using microcomputer tomography imaging (micro-CT).

Results. Bioprosthetic valve dysfunction was mainly caused by the pannus  formation which was shown to encapsulate the anterior leaflet, resulting in its  total failure and severe stenosis (reduced effective orifice area). There were no  signs of ruptures and perforations in the valve tissues found. All leaflets were  shown to contain predominantly fibroblastic cells and single blood cells, mainly located in the surface layers of the leaflets in the regions without any  signs of calcification. Bacteria staining was negative for all types of the studied biomaterials. Calcifications were present in all xeno-tissue elements of the  explanted bioprosthesis (i.e. leaflets, aortic segment, and pericardium). In  addition, calcifications were also found in pannus growing during a functioning  bioprosthetic valve. Calcifications were predominantly located in the co-optation  and commissure zones of the leaflets. Importantly, massive calcifications were  observed around the bioprosthetic stent frame. The total volume of calcification  accounted for 1/3 of the biological component of the bioprosthesis (729 mm3).

Conclusion. According to the data obtained in this study, we may conclude that the primary cause of the bioprosthesis failure was the growth of connective  tissues, resulting in pannus-related dysfunction, rather than severe calcification  of all bioprosthetic components. One may assume that bioprosthetic dysfunction  is related to the peculiarity of the inflammatory response of the preschool  patient. However, this typeof dysfunctions requires further investigation.

About the Authors

T. V. Glushkova
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Laboratory of Novel Biomaterials

Kemerovo

Address: 6, Sosnoviy blvd, Kemerovo, 650002, Russian Federation. Tel.: (3842) 64-46-50, 8-923-606-97-18



E. A. Ovcharenko
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Laboratory of Novel Biomaterials

Kemerovo



A. V. Batranin
National Institute «Tomsk Polytechnic University»
Russian Federation
Tomsk


K. Yu. Klyshnikov
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Laboratory of Novel Biomaterials

Kemerovo



Yu. A. Kudryavtseva
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Laboratory of Novel Biomaterials

Kemerovo



L. S. Barbarash
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Laboratory of Novel Biomaterials

Kemerovo



References

1. Бокерия ЛА, Гудкова РГ. Сердечно-сосудистая хирургия – 2015. Болезни и врожденные аномалии системы кровообращения. М.: НЦССХ им. А.Н. Бакулева. 2016: 208. Bokerija LA, Gudkova RG. Cardiovascular surgery – 2015. Diseases and congenital anomalies of the circulatory system. M.: NCSSH im. A.N. Bakuleva 2016: 208. [in Russ].

2. Burri M, Vogt MO, Hörer J, Cleuziou J, Kasnar-Samprec J, Kühn A et al. Durability of bioprostheses for the tricuspid valve in patients with congenital heart disease. Eur. J. Cardiothorac. Surg. 2016; 50 (5): 988–993. doi: 10.1093/ejcts/ezw094.

3. Сагатов ИЕ. Протезирование клапанов сердца у детей и подростков: непосредственные результаты и их обсуждение. Вестник КазНМУ. 2014; 4: 204–206. Sagatov IE. Protezirovanie klapanov serdtsa u detey i podrostkov: neposredstvennye rezul’taty i ikh obsuzhdenie. Vestnik KazNMU. 2014; 4: 204–206. [in Russ].

4. Горбатых ЮН, Наберухин ЮЛ, Ленько ЕВ, Омельченко АЮ, Хапаев ТС, Жалнина ЕВ и др. Результаты протезирования трикуспидального клапана различными видами протезов у детей. Патология кровообращения и кардиохирургия. 2012; 2: 9–14. Gorbatykh YuN, Naberukhin YuL, Len’ko EV, Omel’chenko AYu, Khapaev TS, Zhalnina EV i dr. Rezul’taty protezirovaniya trikuspidal’nogo klapana razlichnymi vidami protezov u detey. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2012; 2: 9–14. [in Russ].

5. Bartlett HL, Atkins DL, Burns TL, Engelkes KJ, Powell SJ, Hills CB et al. Early outcomes of tricuspid valve replacement in young children. Circulation. 2007; 115 (3): 319–325. doi: 10.1161/CIRCULATIONAHA.106.618652.

6. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE et al. Aging alters tissue resident mesenchymal stem cell properties. Stem. Cell Res. 2012; 8 (2): 215– 225. doi: 10.1016/j.scr.2011.11.002.

7. Anderson JM. Biological Responses to Materials. Annual Review of Materials Research. 2001; 31: 81–110. doi.org/10.1146/annurev.matsci.31.1.81.

8. Mazzarella G, Bianco A, Lucariello A, Savarese L, Fiumarella A, Cerasuolo F et al. Cardiovascular prosthetic surgery: an analysis of cellular and molecular patterns underlying valve implantation failure. In Vivo. 2012; 26 (2): 271–275.

9. Karakoyun SL, Gu Rsoy OM, Kalçık M., Coban Kökten S, Ozkan M. Alternative causes of bioreaction to prosthetic heart valves: three cases with pannus formation. Turk. Kardiyol. Dern. Ars. 2014; 42 (1): 64–67. doi: 10.5543/tkda.2014.22737.

10. Butany JW, Kesarwani R, Yau TM, Singh G, Thangaroopan M, Nair V et al. The role of pannus in the longevity of an Ionescu-Shiley pericardial bioprosthesis. J. Card. Surg. 2006; 21 (5): 505–507. doi: 10.1111/j.1540-8191.2006.00286.x.

11. Oda T, Kato S, Tayama E, Fukunaga S, Akashi H, Aoyagi S. Pannus overgrowth after mitral valve replacement with a Carpentier-Edwards pericardial bioprosthesis. J. Artif. Organs. 2009; 12 (1): 55–57. doi: 10.1007/s10047-008-0445-0.

12. Miura T, Hazama S, Iwasaki K, Izumi K, Matsukuma S, Eishi K. A rapid structural degeneration of a porcine mitral valve. Ann. Thorac. Surg. 2012; 93 (5): e113–e114. doi: 10.1016/j.athoracsur.2011.11.022.

13. Горбатых ЮН, Наберухин ЮЛ, Жалнина ЕВ, Омельченко АЮ, Ленько ЕВ и др. Протезирование трикуспидального клапана у детей: непосредственные и отдаленные результаты. Сибирский медицинский журнал. 2011; 26 (1): 81–85. Gorbatykh YuN, Naberukhin YuL, Zhalnina EV, Omel’chenko AYu, Len’ko EV i dr. Protezirovanie trikuspidal’nogo klapana u detey: neposredstvennye i otdalennye rezul’taty. Sibirskiy meditsinskiy zhurnal. 2011; 26 (1): 81–85. [in Russ].

14. Pettenazzo E, Deiwick M, Thiene G, Molin G, Glasmacher B, Martignago F et al. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. The Journal of Thoracic and Cardiovascular Surgery. 2001; 121 (3): 500– 509. doi: 10.1067/mtc.2001.112464.

15. Пухов ДЭ, Васильев СВ, Зотов АС, Ильин МВ, Рудый АС. Микроморфология, состав, особенности локализации минеральных отложений створок аортальных клапанов по данным сканирующей электронной микроскопии и рентгенодифракционного анализа. Вестник Национального медико- хирургического Центра им. Н.И. Пирогова. 2014; 9 (1): 23–30. Puhov DJe, Vasil’ev SV, Zotov AS, Il’in MV, Rudyy AS. Micromorphology, composition, features of localization of mineral deposits of leaflets of aortic heart valves according to scanning electron microscopy and X-ray diffraction analysis. Bulletin of Pirogov National Medical & Surgical Center. 2014; 9 (1): 23–30. [in Russ].

16. Hutcheson JD, Goettsch C, Rogers MA, Aikawa E. Revisiting cardiovascular calcification: A multifaceted diseaserequiring a multidisciplinary approach. Semin. Cell Dev. Biol. 2015; 46: 68–77. doi: 10.1016/j.semcdb.2015.09.004.


Review

For citations:


Glushkova T.V., Ovcharenko E.A., Batranin A.V., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. A case report of bioprosthetic valve dysfunction after tricuspid valve replacement in a preschool patient: the contribution of pannus and calcification. Russian Journal of Transplantology and Artificial Organs. 2018;20(3):45-53. (In Russ.) https://doi.org/10.15825/1995-1191-2018-3-45-53

Views: 1355


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)