A case report of bioprosthetic valve dysfunction after tricuspid valve replacement in a preschool patient: the contribution of pannus and calcification
https://doi.org/10.15825/1995-1191-2018-3-45-53
Abstract
Aim. To assess the contribution of pannus and calcification to the development of bioprosthetic valve dysfunction after tricuspid valve replacement in a pediatric patient.
Materials and methods. A 3-month-old patient presented with tricuspid valve dysplasia and grade 4 tricuspid insufficiency underwent tricuspid valve replacement with the bioprosthesis «PeriCor» (ZAO «NeoKor», Russian Federation). The patient at the age of 6 years required a redo tricuspid valve replacement 5 years 8 months after initial surgery. Degenerative changes of the dysfunctional bioprosthetic valve explanted from the tricuspid position were assessed using macroscopic description and light microscopy. Cellular composition, the presence of bacteria, colocalization of calcifications with recipient cells were analyzed. The distribution of calcifications and their volume in the biomaterial tissue were estimated using microcomputer tomography imaging (micro-CT).
Results. Bioprosthetic valve dysfunction was mainly caused by the pannus formation which was shown to encapsulate the anterior leaflet, resulting in its total failure and severe stenosis (reduced effective orifice area). There were no signs of ruptures and perforations in the valve tissues found. All leaflets were shown to contain predominantly fibroblastic cells and single blood cells, mainly located in the surface layers of the leaflets in the regions without any signs of calcification. Bacteria staining was negative for all types of the studied biomaterials. Calcifications were present in all xeno-tissue elements of the explanted bioprosthesis (i.e. leaflets, aortic segment, and pericardium). In addition, calcifications were also found in pannus growing during a functioning bioprosthetic valve. Calcifications were predominantly located in the co-optation and commissure zones of the leaflets. Importantly, massive calcifications were observed around the bioprosthetic stent frame. The total volume of calcification accounted for 1/3 of the biological component of the bioprosthesis (729 mm3).
Conclusion. According to the data obtained in this study, we may conclude that the primary cause of the bioprosthesis failure was the growth of connective tissues, resulting in pannus-related dysfunction, rather than severe calcification of all bioprosthetic components. One may assume that bioprosthetic dysfunction is related to the peculiarity of the inflammatory response of the preschool patient. However, this typeof dysfunctions requires further investigation.
About the Authors
T. V. GlushkovaRussian Federation
Laboratory of Novel Biomaterials
Kemerovo
Address: 6, Sosnoviy blvd, Kemerovo, 650002, Russian Federation. Tel.: (3842) 64-46-50, 8-923-606-97-18
E. A. Ovcharenko
Russian Federation
Laboratory of Novel Biomaterials
Kemerovo
A. V. Batranin
Russian Federation
Tomsk
K. Yu. Klyshnikov
Russian Federation
Laboratory of Novel Biomaterials
Kemerovo
Yu. A. Kudryavtseva
Russian Federation
Laboratory of Novel Biomaterials
Kemerovo
L. S. Barbarash
Russian Federation
Laboratory of Novel Biomaterials
Kemerovo
References
1. Бокерия ЛА, Гудкова РГ. Сердечно-сосудистая хирургия – 2015. Болезни и врожденные аномалии системы кровообращения. М.: НЦССХ им. А.Н. Бакулева. 2016: 208. Bokerija LA, Gudkova RG. Cardiovascular surgery – 2015. Diseases and congenital anomalies of the circulatory system. M.: NCSSH im. A.N. Bakuleva 2016: 208. [in Russ].
2. Burri M, Vogt MO, Hörer J, Cleuziou J, Kasnar-Samprec J, Kühn A et al. Durability of bioprostheses for the tricuspid valve in patients with congenital heart disease. Eur. J. Cardiothorac. Surg. 2016; 50 (5): 988–993. doi: 10.1093/ejcts/ezw094.
3. Сагатов ИЕ. Протезирование клапанов сердца у детей и подростков: непосредственные результаты и их обсуждение. Вестник КазНМУ. 2014; 4: 204–206. Sagatov IE. Protezirovanie klapanov serdtsa u detey i podrostkov: neposredstvennye rezul’taty i ikh obsuzhdenie. Vestnik KazNMU. 2014; 4: 204–206. [in Russ].
4. Горбатых ЮН, Наберухин ЮЛ, Ленько ЕВ, Омельченко АЮ, Хапаев ТС, Жалнина ЕВ и др. Результаты протезирования трикуспидального клапана различными видами протезов у детей. Патология кровообращения и кардиохирургия. 2012; 2: 9–14. Gorbatykh YuN, Naberukhin YuL, Len’ko EV, Omel’chenko AYu, Khapaev TS, Zhalnina EV i dr. Rezul’taty protezirovaniya trikuspidal’nogo klapana razlichnymi vidami protezov u detey. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2012; 2: 9–14. [in Russ].
5. Bartlett HL, Atkins DL, Burns TL, Engelkes KJ, Powell SJ, Hills CB et al. Early outcomes of tricuspid valve replacement in young children. Circulation. 2007; 115 (3): 319–325. doi: 10.1161/CIRCULATIONAHA.106.618652.
6. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE et al. Aging alters tissue resident mesenchymal stem cell properties. Stem. Cell Res. 2012; 8 (2): 215– 225. doi: 10.1016/j.scr.2011.11.002.
7. Anderson JM. Biological Responses to Materials. Annual Review of Materials Research. 2001; 31: 81–110. doi.org/10.1146/annurev.matsci.31.1.81.
8. Mazzarella G, Bianco A, Lucariello A, Savarese L, Fiumarella A, Cerasuolo F et al. Cardiovascular prosthetic surgery: an analysis of cellular and molecular patterns underlying valve implantation failure. In Vivo. 2012; 26 (2): 271–275.
9. Karakoyun SL, Gu Rsoy OM, Kalçık M., Coban Kökten S, Ozkan M. Alternative causes of bioreaction to prosthetic heart valves: three cases with pannus formation. Turk. Kardiyol. Dern. Ars. 2014; 42 (1): 64–67. doi: 10.5543/tkda.2014.22737.
10. Butany JW, Kesarwani R, Yau TM, Singh G, Thangaroopan M, Nair V et al. The role of pannus in the longevity of an Ionescu-Shiley pericardial bioprosthesis. J. Card. Surg. 2006; 21 (5): 505–507. doi: 10.1111/j.1540-8191.2006.00286.x.
11. Oda T, Kato S, Tayama E, Fukunaga S, Akashi H, Aoyagi S. Pannus overgrowth after mitral valve replacement with a Carpentier-Edwards pericardial bioprosthesis. J. Artif. Organs. 2009; 12 (1): 55–57. doi: 10.1007/s10047-008-0445-0.
12. Miura T, Hazama S, Iwasaki K, Izumi K, Matsukuma S, Eishi K. A rapid structural degeneration of a porcine mitral valve. Ann. Thorac. Surg. 2012; 93 (5): e113–e114. doi: 10.1016/j.athoracsur.2011.11.022.
13. Горбатых ЮН, Наберухин ЮЛ, Жалнина ЕВ, Омельченко АЮ, Ленько ЕВ и др. Протезирование трикуспидального клапана у детей: непосредственные и отдаленные результаты. Сибирский медицинский журнал. 2011; 26 (1): 81–85. Gorbatykh YuN, Naberukhin YuL, Zhalnina EV, Omel’chenko AYu, Len’ko EV i dr. Protezirovanie trikuspidal’nogo klapana u detey: neposredstvennye i otdalennye rezul’taty. Sibirskiy meditsinskiy zhurnal. 2011; 26 (1): 81–85. [in Russ].
14. Pettenazzo E, Deiwick M, Thiene G, Molin G, Glasmacher B, Martignago F et al. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. The Journal of Thoracic and Cardiovascular Surgery. 2001; 121 (3): 500– 509. doi: 10.1067/mtc.2001.112464.
15. Пухов ДЭ, Васильев СВ, Зотов АС, Ильин МВ, Рудый АС. Микроморфология, состав, особенности локализации минеральных отложений створок аортальных клапанов по данным сканирующей электронной микроскопии и рентгенодифракционного анализа. Вестник Национального медико- хирургического Центра им. Н.И. Пирогова. 2014; 9 (1): 23–30. Puhov DJe, Vasil’ev SV, Zotov AS, Il’in MV, Rudyy AS. Micromorphology, composition, features of localization of mineral deposits of leaflets of aortic heart valves according to scanning electron microscopy and X-ray diffraction analysis. Bulletin of Pirogov National Medical & Surgical Center. 2014; 9 (1): 23–30. [in Russ].
16. Hutcheson JD, Goettsch C, Rogers MA, Aikawa E. Revisiting cardiovascular calcification: A multifaceted diseaserequiring a multidisciplinary approach. Semin. Cell Dev. Biol. 2015; 46: 68–77. doi: 10.1016/j.semcdb.2015.09.004.
Review
For citations:
Glushkova T.V., Ovcharenko E.A., Batranin A.V., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. A case report of bioprosthetic valve dysfunction after tricuspid valve replacement in a preschool patient: the contribution of pannus and calcification. Russian Journal of Transplantology and Artificial Organs. 2018;20(3):45-53. (In Russ.) https://doi.org/10.15825/1995-1191-2018-3-45-53