DIALYSIS START TIMING: DEVELOPMENT AND VALIDATION OF START SCORING SCALE
https://doi.org/10.15825/1995-1191-2018-2-47-60
Abstract
Aim. The optimal time for initiating of chronic dialysis remains unknown. The scale for mortality risk assessment could help in decision-making concerning dialysis start timing.
Methods. We randomly divided 1856 patients started dialysis in 2009–2016 into developmental and validation group (1:1) to create and validate scoring system «START» predicting mortality risk at dialysis initiation in order to fi nd unmodifi able and modifi able factors which could help in the decision-making of dialysis start. In the series of univariate regression models in the developmental set, we evaluated the mortality risk linked with available parameters: age, eGFR, serum phosphate, total calcium, hemoglobin, Charlson comorbidity index, diabetes status, urgency of start (turned to be signifi cant) and gender, serum sodium, potassium, blood pressure (without impact on survival). Similar hazard ratios were converted to score points.
Results. The START score was highly predictive of death: C-statistic was 0.82 (95% CI 0.79–0.85) for the developmental dataset and 0.79 (95% CI 0.74–0.84) for validation dataset (both p < 0.001). On applying the cutoff between 7–8 points in the developmental dataset, the risk score was highly sensitive 81.1% and specifi c 67.9%; for validation dataset, the sensitivity was 78.9%, specifi city 67.9%. We confi rmed the similarity in survival prediction in the validation set to developmental set in low, medium and high START score groups. The difference in survival between three levels of START-score in validation set remained similar to that of developmental set: Wilcoxon = 8.78 (p = 0.02) vs 15.31 (p < 0.001) comparing low–medium levels and 25.18 (p < 0.001) vs 39.21 (p < 0.001) comparing medium–high levels.
Conclusion. Developed START score system including modifi able factors showed good mortality prediction and could be used in dialysis start decision-making.
About the Authors
A. Yu. ZemchenkovRussian Federation
191104, 56, Liteiny pr., Saint-Petersburg.
R. P. Gerasimchuk
Russian Federation
A. B. Sabodash
Russian Federation
K. A. Vishnevskii
Russian Federation
G. A. Zemchenkov
Russian Federation
A. M. Omelchenko
Russian Federation
N. N. Kulaeva
Russian Federation
I. N. Konakova
Russian Federation
A. A. Yakovenko
Russian Federation
A. Sh. Rumyantsev
Russian Federation
References
1. Rivara MB, Mehrotra R. Timing of Dialysis Initiation: What Has Changed Since IDEAL? Semin. Nephrol. 2017; 37 (2): 181–193. doi: 10.1016/j.semnephrol.2016.12.008.
2. Cooper BA, Branley P, Bulfone L, Collins JF, Craig JC, Fraenkel MB et al. IDEAL Study. A randomized, controlled trial of early versus late initiation of dialysis. N. Engl. J. Med. 2010; 363 (7): 609–619. doi: 10.1056/ NEJMoa1000552.
3. O’Hare AM, Wong SP, Yu MK, Wynar B, Perkins M, Liu CF et al. Trends in the Timing and Clinical Context of Maintenance Dialysis Initiation. J. Am. Soc. Nephrol. 2015; 26 (8): 1975–1981. doi: 10.1681/ASN.2013050531.
4. Higuchi S, Nakaya I, Yoshikawa K, Chikamatsu Y, Sada K, Yamamoto S et al. Potential Benefi t Associated With Delaying Initiation of Hemodialysis in a Japanese Cohort. Kidney Int. Reports. 2017; 2 (4): 594–602. doi:10.1016/j.ekir.2017.01.015.
5. Susantitaphong P, Altamimi S, Ashkar M, Balk EM, Stel VS, Wright S, Jaber BL. GFR at initiation of dialysis and mortality in CKD: A meta-analysis. Am. J. Kidney Dis. 2012; 59 (6): 829–840. doi: 10.1053/j.ajkd.2012.01.015.
6. Sood MM, Manns B, Dart A, Hiebert B, Kappel J, Komenda P et al. Canadian Kidney Knowledge Translation and Generation Network (CANN-NET). Variation in the level of eGFR at dialysis initiation across dialysis facilities and geographic regions. Clin. J. Am. Soc. Nephrol. 2014; 9 (10): 1747–1756. doi: 10.2215/CJN.12321213.
7. Slinin Y, Guo H, Li S, Liu J, Morgan B, Ensrud K et al. Provider and care characteristics associated with timing of dialysis initiation. Clin. J. Am. Soc. Nephrol. 2014; 9 (2): 310–317. doi: 10.2215/CJN.04190413.
8. Floege J, Gillespie IA, Kronenberg F, Anker SD, Gioni I, Richards S et al. Development and validation of a predictive mortality risk score from a European hemodialysis cohort. Kidney Int. 2015; 87 (5): 996–1008. doi: 10.1038/ki.2014.419.
9. Zemchenkov AYu, Vishnevskii KA, Sabodash AB, Gerasimchuk RP, Ananieva AO, Konakova IN et al. The timingan dother dialysis start features associated with survival: St-Petersburg renal replacement therapy register. Nephrology and Dialysis. 2017; 19 (2): 255–270. [In Russ, English abstract]. doi: 10.28996/1680-4422-20172-255-270.
10. Rebollo Rubio A, Morales Asencio JM, Eugenia Pons Raventos M. Depression, anxiety and health-related quality of life amongst patients who are starting dialysis treatment. J. Ren. Care. 2017; 43 (2): 73–82. doi: 10.1111/jorc.12195.
11. Komenda P, Gavaghan MB, Garfi eld SS, Poret AW, Sood MM. An economic assessment model for in-center, conventional home, and more frequent home hemodialysis. Kidney Int. 2012; 81 (3): 307–313. doi: 10.1038/ ki.2011.338.
12. Strokov GA, Gurevich KYa, Ilyin AP, Denisov AYu, Zemchenkov AYu, Andrusev AM et al. Treatment of patients with chronic kidney disease stage 5 by hemodialysis and hemodiafi ltration. Clinical Guidelines. Russian Dialysis Society Working Group. Nephrology. 2017; 21 (3): 92–111. [In Russ, English abstract]. doi: 10.24884/1561-6274-2017-3-92-111.
13. Selim G, Stojceva-Taneva O, Spasovski G, Tozija L, Grozdanovski R, Georgievska-Ismail L et al. Timing of nephrology referral and initiation of dialysis as predictors for survival in hemodialysis patients: 5-year followup analysis. Int. Urol. Nephrol. 2015; 47 (1): 153–160. doi: 10.1007/s11255-014-0794-y.
14. Doi T, Yamamoto S, Morinaga T, Sada KE, Kurita N, Onishi Y. Risk Score to Predict 1-Year Mortality after Haemodialysis Initiation in Patients with Stage 5 Chronic Kidney Disease under Predialysis Nephrology Care. PLoS One. 2015; 10 (6): e0129180. doi: 10.1371/journal.pone.0129180.
15. Wagner M, Ansell D, Kent DM, Griffi th JL, Naimark D, Wanner C et al. Predicting mortality in incident dialysis patients: an analysis of the United Kingdom Renal Registry. Am. J. Kidney Dis. 2011; 57 (6): 894–902. doi: 10.1053/j.ajkd.2010.12.023.
16. Couchoud C, Labeeuw M, Moranne O, Allot V, Esnault V, Frimat L et al. French Renal Epidemiology and Information Network (REIN) registry. A clinical score to predict 6-month prognosis in elderly patients starting dialysis for end-stage renal disease. Nephrol. Dial. Transplant. 2009; 24 (5): 1553–1561. doi: 10.1093/ndt/gfn698.
17. Cohen LM, Ruthazer R, Moss AH, Germain MJ. Predicting six-month mortality for patients who are on maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 2010; 5 (1): 72–79. doi: 10.2215/CJN.03860609.
18. Jaar BG, Coresh J, Plantinga LC, Fink NE, Klag MJ, Levey AS et al. Comparing the risk for death with peritoneal dialysis and hemodialysis in a national cohort of patients with chronic kidney disease. Ann. Intern. Med. 2005; 143 (3): 174–183.
19. Yazawa M, Kido R, Ohira S, Hasegawa T, Hanafusa N, Iseki K et al. Early mortality was highly and strongly associated with functional status in incident Japanese hemodialysis patients: A cohort study of the large national dialysis registry. PLoS One. 2016; 11 (6): e0156951. doi: 10.1371/journal.pone.0156951.
20. Liu X, Huang R, Wu H, Wu J, Wang J, Yu X, Yang X. Patient characteristics and risk factors of early and late death in incident peritoneal dialysis patients. Sci Rep. 2016; 6: 32359. doi: 10.1038/srep32359.
21. Lukowsky LR, Kheifets L, Arah OA, Nissenson AR, Kalantar-Zadeh K. Patterns and Predictors of Early Mortality in Incident Hemodialysis Patients: New Insights. Am. J. Nephrol. 2012; 35 (6): 548–558. doi: 10.1159/000338673.
22. Jain AK, Sontrop JM, Perl J, Blake PG, Clark WF, Moist LM. Timing of peritoneal dialysis initiation and mortality: analysis of the Canadian Organ Replacement Registry. Am. J. Kidney Dis. 2014; 63 (5): 798–805. doi: 10.1053/j.ajkd.2013.10.054.
23. Magalhães LP, dos Reis LM, Graciolli FG, Pereira BJ, de OliveiraRB, de Souza AA et al. Predictive Factors of One-Year Mortality in a Cohort of Patients Undergoing Urgent-Start Hemodialysis. PLoS ONE. 2017; 12 (1): e0167895. doi:10.1371/journal.pone.0167895.
24. Andrusev AM, Zemchenkov AYu. Dialysis regimen and residual renal function. Nephrology and Dialysis. 2017; 19 (4): 483–492. [In Russ, English abstract].doi: 10.28996/1680-4422-2017-4-522-530.
25. Janmaat CJ, van Diepen M, Krediet RT, Hemmelder MH, Dekker FW. Effect of glomerular fi ltration rate at dialysis initiation on survival in patients with advanced chronic kidney disease: what is the effect of lead-time bias? Clin. Epidemiol. 2017; 9: 217–230. doi: 10.2147/CLEP.S127695.
26. Ramspek CL, Nacak H, van Diepen M, van Buren M, Krediet RT, Rotmans JI et al. NECOSAD Study Group. Pre-dialysis decline of measured glomerular fi ltration rate but not serum creatinine-based estimated glomerular fi ltration rate is a risk factor for mortality on dialysis. Nephrol. Dial. Transplant. 2017; 32 (1): 89–96. doi: 10.1093/ndt/gfw236.
27. Ramspek CL, Voskamp PWM, Krediet RT, Dekker FW, van Diepen M. Prediction models for the mortality risk in chronic dialysis patients: a systematic review and independent external validation study. Nephrol. Dial. Transplant. 2016; 31 (suppl_1): i20. doi: 10.1093/ndt/gfw125.01.
28. van Diepen M, Ramspek CL, Jager KJ, Zoccali C, Dekker FW. Prediction versus aetiology: common pitfalls and how to avoid them. Nephrol. Dial. Transplant. 2017; 32 (suppl_2): ii1–ii5. doi: 10.1093/ndt/gfw459.
29. Yakovenko A, Rumyantsev A, Somova V. A current approach to estimating the body composition of patients on hemodialysis. Vrach. 2018; (1): 43–45. [In Russ, English abstract]. doi: 10.29296/25877305-2018-01-12.
30. Holme I, Fellström BC, Jardin AG, Schmieder RE, Zannad F, Holdaas H. Prognostic model for total mortality in patients with haemodialysis from the Assessments of Survival and Cardiovascular Events (AURORA) study. J. Intern. Med. 2012; 271 (5): 463–471. doi: 10.1111/j.1365-2796.2011.02435.x.
31. Mauri JM, Clèries M, Vela E. Catalan Renal Registry. Design and validation of a model to predict early mortality in haemodialysis patients. Nephrol. Dial. Transplant. 2008; 23 (5): 1690–1696. doi: 10.1093/ndt/gfm728.
32. Geddes CC, van Dijk PC, McArthur S, Metcalfe W, Jager KJ, Zwinderman AH et al. The ERA-EDTA cohort study-comparison of methods to predict survival on renal replacement therapy. Nephrol. Dial. Transplant. 2006; 21 (4): 945–956.
33. Dekker FW, Ramspek CL, van Diepen M. Con: Most clinical risk scores are useless. Nephrol. Dial. Transplant. 2017; 32 (5): 752–755. doi: 10.1093/ndt/gfx073.
34. Wynants L, Collins GS, Van Calster B. Key steps and common pitfalls in developing and validating risk models. BJOG. 2016. doi: 10.1111/1471-0528.14170.
35. Bikbov BT, Tomilina NA. The contingent and treatment quality indicators in patients on replacement therapy of end stage renal disease in the Russian Federation in 1998–2013 years. Nephrology and Dialysis. 2016; 18 (2): 98–164. [In Russ, English abstract].
Review
For citations:
Zemchenkov A.Yu., Gerasimchuk R.P., Sabodash A.B., Vishnevskii K.A., Zemchenkov G.A., Omelchenko A.M., Kulaeva N.N., Konakova I.N., Yakovenko A.A., Rumyantsev A.Sh. DIALYSIS START TIMING: DEVELOPMENT AND VALIDATION OF START SCORING SCALE. Russian Journal of Transplantology and Artificial Organs. 2018;20(2):47-60. (In Russ.) https://doi.org/10.15825/1995-1191-2018-2-47-60