Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

ПРОБЛЕМЫ ПРИМЕНЕНИЯ И ПУТИ ОПТИМИЗАЦИИ НЕПУЛЬСИРУЮЩИХ (РОТОРНЫХ) НАСОСОВ МЕХАНИЧЕСКОЙ ПОДДЕРЖКИ КРОВООБРАЩЕНИЯ

https://doi.org/10.15825/1995-1191-2018-1-138-143

Полный текст:

Аннотация

Метод механической поддержки кровообращения с использованием насосов непульсирующего потока, построенных на принципе роторных (центробежных и осевых) насосов, занял ведущее направление (94%) в мировой клинической практике для лечения больных с терминальной сердечной недостаточностью. Несмотря на это, клиника применения данных насосов в ряде случаев столкнулась с проблемами, связанными с данной технологией. Все это стимулировало развитие нового направления по разработке новых принципов управления роторными насосами, основанных на модуляции скорости оборотов насосов. В статье проведен анализ негативных факторов клинического применения насосов непульсирующего потока и обзор методов оптимизации управления насосами, основанных на модуляции скорости выходного потока.

Об авторах

И. П. Иткин
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова»; Московский физико-технический институт (Государственный университет)
Россия

Иткин Георгий Пинкусович, кафедра физики живых систем

123182, Москва, ул. Щукинская, д. 1



С. В. Готье
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский университет)
Россия

Кафедра трансплантологии и искусственных органов

Москва



Список литературы

1. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015; 34 (12): 1495–1504. DOI: 10.1016/j.healun.2015.10.003.

2. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al. Advanced heart failure treated with continuous-fl ow left ventricular assist device. N. Engl. J. Med. 2009; 361 (23): 2241–2251. DOI: 10.1056/NEJMoa0909938.

3. Miller L, Pagani FD, Russell SD, John R, Boyle AJ, Aaron son KD. Use of a continuous-fl ow device in patients awaiting heart transplantation. N. Engl. J. Med. 2007; 357: 885–896. PMID: 17761592 DOI: 10.1056/NEJMoa067758.

4. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT et al. Reversal of severe heart failure with a continuous-fl ow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011; 123 (4): 381–390. DOI: 10.1161/CIRCULATIONAHA. 109.933960.

5. Birks EJ, George RS, Firouzi A, Wright G, Bahrami T, Yacoub MH et al. Long-term outcomes of patients bridged to recovery versus patients bridged to transplantation. J. Thorac. Cardiovasc. Surg. 2012; 190–196. DOI: 10.1016/j.jtcvs.2012.03.021.

6. Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005; 112 (9 Suppl): I32–I36. DOI: 10.1161/CIRCULATIONAHA.104.524124.

7. Drakos SG, Pagani FD, Lundberg MS, Baldwin JT. Advancing the Science of Myocardial Recovery With Mechanical Circulatory Support: A Working Group of the National, Heart, Lung, and Blood Institute. JACC Basic. Transl. Sci. 2017 Jun; 2 (3): 335–340. doi: 10.1016/j.jacbts.2016.12.003.

8. Rose EA, Moskowitz AJ, Packer M, Sollano JA, Wiliams DL, Tierney AR et al. The REMATCH trial: rationale, design, and end points. Ann. Thorac. Surg. 1999; 67 (3): 723–730. PMID: 10215217.

9. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M et al. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J. Thorac. Cardiovasc. Surg. 2012; 144 (3): 584–603. DOI: 10.1016/j.jtcvs.2012.05.044.

10. Drews T, Stepanenko A, Dandel M, Buz S, Lehmkupl HB, Helzer R. Mechanical circulatory support in patient of advanced age. Eur. J. Heart. Fail. 2010; 12 (9): 990–994. DOI: 10.1093/eurjhf/hfq076. PMID:20495203.

11. Salamonsen RF, Mason DG, Ayre PJ. Response of rotary blood pumps to changes in preload and afterload at a fi xed speed setting are unphysiological when compared with the natural heart. Artif Organs. 2011 Mar; 35 (3): E47-53. doi: 10.1111/j.1525-1594.2010.01168.x. Epub 2011 Mar 1.

12. Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Rotary pumps and diminished pulsatility: do we need a pulse? ASAIO J. 2013; 59 (4): 355–366. doi: 10.1097/MAT.0b013e31829f9bb3.

13. Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, Fukamachi K. Does pulsatility matter in the era of continuous-fl ow blood pumps? J. Heart. Lung. Transplant. 2015 Aug; 34 (8): 999–1004. doi: 10.1016/j.healun.2014.09.012.

14. Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Rotary Pumps and Diminished Pulsatility: Do We Need a Pulse? ASAIO Journal. 2013; 59: 355–366.

15. Saeed O, Jermyn R, Kargoli F, Madan S, Mannem S, Gunda S et al. Blood pressure and adverse events during continuous fl ow left ventricular assist device support. Circ. Heart. Fail. 2015 May; 8 (3): 551–556. doi: 10.1161/CIRCHEARTFAILURE.114.002000.

16. Vandenberghe S, Segers P, Antaki J, Meyns B, Verdonck VPR. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO Journal. 2005; 51: 711–718. PMID:16340355.

17. Thalmann M, Schima H, Wieselthaler G, Wolner E. Physiology of continuous blood fl ow in recipients of rotary cardiac assist devices. J. Heart. Lung. Transplant. 2005 Mar; 24 (3): 237–245. PMID: 15737748 DOI: 10.1016/j.healun.2004.04.018.

18. Baba A, Dobsák P, Saito I, Isoyama T, Takiura K, Abe Y et al. Microcirculation of the bulbar conjunctiva in the goat implanted with a total artifi cial heart: Effects of pulsatile and nonpulsatile fl ow. ASAIO J. 2004; 50: 321– 327. PMID: 14616529.

19. Amir O, Radovancevic B, Delgado RM, Kar B, Radovancevic R, Henderson M et al. Peripheral vascular reactivity in patients with pulsatile vs axial fl ow left ventricular assist device support. Journal of Heart and Lung Transplantation. 2006; 25: 391–394. PMID: 16563966 DOI: 10.1016/j.healun.2005.11.439.

20. Ji B, Undar A. Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: Is there a difference? Perfusion. 2007; 22: 115–119. PMID: 17708160.

21. Orime Y, Shiono M, Nakata K, Hata M, Sezai A, Yamada H et al. The role of pulsatility in end organ microcirculation after cardiogenic shock. ASAIO J. 1996; 42: M724–M729. PMID: 8944976.

22. Dobsák P, Novakova M, Baba A, Vasku J, Isoyama T, Saito I et al. Infl uence of fl ow design on microcirculation in conditions of undulation pump-left ventricle assist device testing. Artif Organs. 2006; 30: 478–487. PMID: 16734600 DOI: 10.1111/j.1525-1594.2006.00244.x.

23. Ji, Undar A. An evaluation of the benefi ts of pulsatile versus non-pulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO J. 2006; 52: 357–361. PMID: 16883112 DOI: 10.1097/01.mat.0000225266.80021.9b.

24. Letsou GV, Shah N, Gregoric ID, Myers HJ, Delgado R, Frazier OH. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-fl ow left ventricular assist device. J. Heart. Lung. Transplant. 2005; 24: 105–109. PMID: 15653390 DOI: 10.1016/j.healun.2003.10.018.

25. Hayes HM, Dembo LG, Larbalestier R, O’Driscoll G. Management options to treat gastrointestinal bleeding in patients supported on rotary left ventricular assist devices: A single-center experience. Artif. Organs. 2010; 34: 703–706. doi: 10.1111/j.15251594.2010.01084.x.

26. John R, Kamdar F, Liao K, Colvin-Adams M, Boyle A, Joyce L. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann. Thorac. Surg. 2008; 86: 1227–1234; discussion 1234. DOI: 10.1016/j.athoracsur.2008.06.030.

27. John R. Current axial-fl ow devices –The HeartMate II and Jarvik 2000 left ventricular assist devices. Semin. Thorac. Cardiovasc. Surg. 2008; 20: 264–272. PMID: 18805167 DOI: 10.1016/j.athoracsur.2008.06.030.

28. Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart. Lung. Transplant. 2011; 30: 849–853. DOI: 10.1016/j.healun.2011.03.008.

29. Morgan JA, Paone G, Nemeh HW, Henry SE, Patel R, Vavra J et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J. Heart. Lung. Transplant. 2012; 31: 715–718. DOI: 10.1016/j.healun.2012.02.015.

30. Crow S, John R, Boyle A, Shumway S, Liao K, ColvinAdams M et al. Gastrointestinal bleeding rates in recipients of non-pulsatile and pulsatile left ventricular assist devices. J Thorac. Cardiovasc. Surg. 2009; 137: 208. DOI: 10.1016/j.jtcvs.2008.07.032.

31. Geisen U, Heilmann C, Beyersdorf F, Benk C, BerchtoldHerz M, Schlensak et al. Nonsurgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur. J. Cardiothorac. Surg. 2008; 33: 679–684. DOI: 10.1016/j.ejcts.2007.12.047.

32. Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuousfl ow left ventricular assist device (HeartMate II). J. Am. Coll. Cardiol. 2009; 53: 2162–2167. DOI: 10.1016/j.jacc.2009.02.048.

33. Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V 3rd et al. Acquired von Willebrand syndrome in continuous-fl ow ventricular assist device recipients. Ann. Thorac. Surg. 2010; 90: 1263–1269; discussion 1269.20868825. DOI: 10.1016/j.athoracsur.2010.04.099.

34. Crow S, Milano C, Joyce L, Chen D, Arepally G, Bowles D et al. Comparative analysis of von Willebrand factor profi les in pulsatile and continuous left ventricular assist device recipients. ASAIO J. 2010; 56: 441–445, 1396–1404, 200. doi: 10.1097/MAT.0b013e3181e5de0a.

35. Giridharan GA, Ewert DL, Pantalos GM, Gillars KJ, Litwak KN, Gray LA et al. Left ventricular and myocardial perfusion responses to volume unloading and after-load reduction in a computer simulation. ASAIO J. 2004; 50: 512–518, DOI: 10.1097/01.MAT.0000136513.21369.75.

36. Klotz S, Deng MC, Stypmann J, Roetker J, Wilhelm MJ, Hammel D et al. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann. Thorac. Surg. 2004; 77: 143–149; discussion 149. DOI: 10.1016/S00034975(03)01336-5.

37. Thohan V, Stetson SJ, Nagueh SF, Rivas-Gotz C, Koerner MM, Lafuente JA et al. Cellular and hemodynamics responses of failing myocardium to continuous fl ow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: A comparative analysis with pulsatile-type devices. J. Heart. Lung. Transplant. 2005; 24: 566–575, 2005. DOI: 10.1016/j.healun.2004.02.017.

38. Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T, Potapov E et al. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann. Thorac. Surg. 2011; 91: 1335–1340. DOI: 10.1016/j.athoracsur.2011.01.027.

39. Kato TS, Chokshi A, Singh P, Khawaja T, Cheema F, Akashi H et al. Effects of continuous-fl ow versus pulsatilefl ow left ventricular assist devices on myocardial unloading and remodeling. Circ. Heart. Fail. 2011; 14: 546–553. DOI: 10.1161/CIRCHEARTFAILURE. 111.962142.

40. Koenig SC, Pantalos GM, Gillars KJ, Ewert DL, Litwak KN, Etoch SW. Hemodynamic and pressure-volume responses to continuous and pulsatile ventricular assist in an adult mock circulation. ASAO J. 2004; 50: 15–24. DOI: 10.1097/01.MAT.0000104816.50277.EB.

41. May-Newman K, Enriquez-Almaguer L, Posuwattanakul P, Dembitsky W. Biomechanics of the aortic valve in the continuous fl ow VAD-assisted heart. ASAIO J. 2001; 56: 301–308. DOI: 10.1097/MAT.0b013e3181e321da.

42. Mudd JO, Cuda JD, Halushka M, Soderlund KA, Conte J, Russell SD. Fusion of aortic valve commissures in patients supported by a continuous axial fl ow left ventricular assist device. J. Heart. Lung. Transplant. 2008; 27: 1269–1274. DOI: 10.1016/j.healun.2008.05.029.

43. Rose AG, Park SJ, Bank AJ, Miller LW. Partial aortic valve fusion induced by left ventricular assist device. Ann. Thorac. Surg. 2000; 70: 1270–1274. PMID: 1081884.

44. Hatano M, Kinugawa K, Shiga T, Kato N, Endo M, Hisagi M et al. Less frequent opening of the aortic valve and a continuous fl ow pump are risk factors for postoperative onset of aortic insuffi ciency in patients with a left ventricular assist device. Circ. J. 2011; 75: 1147–1155. DOI: 10.1253/circj.CJ-10-1106.

45. Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC et al. Prevalence of de novo aortic insuffi ciency during long-term support with left ventricular assist devices. J. Heart. Lung. Transplant. 2010; 29: 1172–1176. DOI: 10.1016/j.healun.2010.05.018.

46. Tuzun E, Gregoric ID, Conger JL, Golden K, Jarvik R, Frazier OH. The effect of intermittent low speed mode upon aortic valve opening in calves supported with a Jarvik 2000 axial fl ow device. ASAIO J. 2005 Mar-Apr; 51 (2): 139–143. PMID: 15839437.

47. Tolpen SI, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K. Programmed Speed Reduction Enables Aortic Valve Opening and Increased Pulsatility in the LVAD-Assisted Heart. ASAIO J. 2015; 61 (5): 540–547. doi: 10.1097/MAT.0000000000000241.

48. Larose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the Heart Ware ventricular assist system. ASAIO J. 2010; 56: 285–289. DOI: 10.1097/MAT.0b013e3181dfbab5.

49. Wang S, Rider AR, Kunselman AR, Richardson JS, Dasse KA, Undar A. Effects of the pulsatile fl ow settings on pulsatile waveforms and hemodynamic energy in a pedivas centrifugal pump. ASAIO J. 2009; 55: 271–276. DOI: 10.1097/MAT.0b013e31819401f9.

50. Vollkron M, Schima H, Huber L, Benkowski R, Morello G, Wieselthaler G. Advanced suction detection for an axial fl ow pump. Artif. Organs. 2006 Sep; 30 (9): 665–670. PMID: 16934094 DOI: 10.1111/j.15251594.2006.00282.x.

51. Yuhki AI, Hatoh E, Nogawa M, Miura M, Shimazaki Y, Takatani S. Detection of suction and regurgitation of the implantable centrifugal pump based on the motor current waveform analysis and its application to optimization of pump fl ow. Artif. Organs. 1999 Jun; 23 (6): 532–527. PMID: 10392280.

52. Tchantchaleishvili V, Jessica GY, Luc JGY, Cohan CM, Phan K, Hübbert L et al. Clinical implications of physiological fl ow adjustment in continuous-fl ow left ventricular assist devices. ASAIO J. 2017 May/Jun; 63 (3): 241–250. doi: 10.1097/MAT.0000000000000477.

53. Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Feasibility of Pump Speed Modulation for Restoring Vascular Pulsatility with Rotary Blood Pumps. ASAIO J. 2015 Sep-Oct; 61 (5): 526–532. doi: 10.1097/MAT.0000000000000262.

54. Bartoli CR, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD, Slaughter MS et al. Hemodynamic responses to continuous versus pulsatilemechanical unloading of the failing left ventricle. ASAIO J. 2010 Sep-Oct; 56 (5): 410–416. doi: 10.1097/ MAT.0b013e3181e7bf3c.

55. Undar A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif. Organs. 2004; 28 (5): 439–443. DOI: 10.1111/j.15251594.2004.00086.x.

56. Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH et al. Rapid Speed Modulation of a Rotary Total Artifi cial Heart Impeller. Artif. Organs. 2016; 40 (9): 824–833. doi: 10.1111/aor.12827.

57. Pirbodaghi T. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile in vitro Flow Environment. Artif. Organs. 2017; 41 (8): 710–716. doi: 10.1111/aor.12860.

58. Bozkurt SI, van de Vosse FN, Rutten MC. Improving arterial pulsatility by feedback control of a continuous fl ow left ventricular assist device via in silico modeling. Int. J. Artif. Organs. 2014; 37 (10): 773–785. doi: 10.5301/ijao.5000328.

59. Huang FI, Ruan X, Fu X. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation. ASAIO J. 2014; 60 (3): 269–279. doi: 10.1097/MAT.0000000000000059.

60. Bozkurt S. van de Vosse FN, Rutten MCM. Enhancement of Arterial Pressure Pulsatility by Left Ventricular Assist Device Flow Rate in Mock Circulatory System. J. Med. Biol. Eng. 2016; 36: 308–315. DOI 10.1007/s40846016-014060.

61. Jahren SE, Ochsner G, Shu F, Amacher R, Antaki JF, Vandenberghe S. Analysis of pressure head-fl ow loops of pulsatile rotodynamic blood pumps. Artif. Organs. 2014; 38 (4): 316–326. doi: 10.1111/aor.12139.

62. Garcia MAZV, Enriquez LA, Dembitsky W, May-Newman K. The Effect of Aortic Valve Incompetence on the Hemodynamics of a Continuous Flow Ventricular Assist Device in a Mock Circulation. SAIO Journal. 2008; 54: 237–244. DOI: 10.1097/MAT.0b013e31816a309b.

63. Sumikura H, Homma A, Ohnuma K, Taenaka Y, Takewa Y, Mukaibayashi H et al. Development and evaluation of endurance test system for ventricular assist devices. J. Artif. Organs. 2013; 16: 138–148. DOI 10.1007/s10047-013-0687-3.

64. Soucy KG, Bartoli CR, Phillips D, Giridharan GA, Sobieski MA, Wead WB et al. Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply: Demand in Chronic Heart Failure. Ann. Biomed. Eng. 2017; 45 (6): 1475–1486. doi: 10.1007/s10439017-1804-x.

65. Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Adachi H. et al. Alternation of left ventricular load by a continuous-fl ow left ventricular assist device with a native heart load control system in a chronic heart failure model. J. Thorac. Cardiovasc. Surg. 2014; 148 (2): 698–704. doi: 10.1016/j.jtcvs.2013.12.049.

66. Karantonis DM, Lovell NH, Ayre PJ, Mason DG, Cloherty SL. Identifi cation and classifi cation of physiologically signifi cant pumping states in an implantable rotary blood pump. Artif. Organs. 2006; 30 (9): 671–679. DOI: 10.1111/j.1525-1594.2006.00283.x.

67. Pirbodaghi Т, Cotter С, Bourque К. Power Consumption of Rotary Blood Pumps: Pulsatile Versus ConstantSpeed Mode. Artifi cial. Organs. 2014; 38 (12): 1024– 1028. doi:10.1111/aor.12323.

68. Kishimoto S, Date K, Arakawa M, Takewa Y, Nishimura T, Tsukiya T et al. Infl uence of a novelelectrocardiogramsynchronized rotational-speed-change system of an implantable continuous-fl ow left ventricular assist device (EVAHEART) on hemolytic performance. J. Artif. Organs. 2014; 17 (4): 373–377. doi: 10.1007/s10047014-0787-8.


Для цитирования:


Иткин И.П., Готье С.В. ПРОБЛЕМЫ ПРИМЕНЕНИЯ И ПУТИ ОПТИМИЗАЦИИ НЕПУЛЬСИРУЮЩИХ (РОТОРНЫХ) НАСОСОВ МЕХАНИЧЕСКОЙ ПОДДЕРЖКИ КРОВООБРАЩЕНИЯ. Вестник трансплантологии и искусственных органов. 2018;20(1):138-143. https://doi.org/10.15825/1995-1191-2018-1-138-143

For citation:


Itkin G.P., Gautier S.V. THE PROBLEMS AND THE OPTIMIZATION OF NON-PULSATING PUMPS OF THE ASSISTED BLOOD CIRCULATION. Russian Journal of Transplantology and Artificial Organs. 2018;20(1):138-143. (In Russ.) https://doi.org/10.15825/1995-1191-2018-1-138-143

Просмотров: 212


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)