Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography

https://doi.org/10.15825/1995-1191-2017-4-78-87

Abstract

Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modifi ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers.

Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.

Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length) are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.

Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signifi cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artifi cial cellular systems enables to improve effi ciency of development of novel cell-engineered constructions with predicted morphological, physical, chemical and biological characteristics for tasks of tissue engineering and regenerative medicine. 

About the Authors

A. E. Efimov
Laboratory of Bionanotechnology, V.I. Shumakov National Medical Research Center of Transplantology and Artifi cial Organs of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Moscow.


O. I. Agapova
Laboratory of Bionanotechnology, V.I. Shumakov National Medical Research Center of Transplantology and Artifi cial Organs of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Moscow.


L. A. Safonova
Laboratory of Bionanotechnology, V.I. Shumakov National Medical Research Center of Transplantology and Artifi cial Organs of the Ministry of Healthcare of the Russian Federation; Faculty of Biology, M.V. Lomonosov Moscow State University.
Russian Federation
Moscow.


M. M. Bobrova
Laboratory of Bionanotechnology, V.I. Shumakov National Medical Research Center of Transplantology and Artifi cial Organs of the Ministry of Healthcare of the Russian Federation; Faculty of Biology, M.V. Lomonosov Moscow State University.
Russian Federation
Moscow.


I. I. Agapov
Laboratory of Bionanotechnology, V.I. Shumakov National Medical Research Center of Transplantology and Artifi cial Organs of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Moscow.


References

1. Zankel A, Wagner J, Poelt P. Serial sectioning methods for 3D investigations in materials science. Micron. 2014; 62: 66–78. DOI: 10.1016/j.micron.2014.03.002.

2. Alekseev A, Efi mov A, Loos J, Matsko N, Syurik J. Threedimensional imaging of polymer materials by Scanning Probe Tomography. Eur. Polym. J. 2014; 52: 154–165. DOI: 10.1016/j.eurpolymj.2014.01.003.

3. Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006; 27 (8): 1362–1376. DOI: 10.1016/j.biomaterials.2005.08.035.

4. Bradley RS, Robinson IK, Yusuf M. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds. Macromol. Biosci. 2017; 17: 1600236. DOI: 10.1002/ mabi.201600236.

5. Langer M, Peyrin F. 3D X-ray ultra-microscopy of bone tissue. Osteoporosis Int. 2016; 27: 441–455. DOI: 10.1007/s00198-015-3257-0.

6. Bailey RJ, Geurts R, Stokes DJ, de Jong F, Barber AH. Evaluating focused ion beam induced damage in soft materials. Micron. 2013; 50: 51–56. DOI: 10.1016/j.micron.2013.04.005.

7. Linkov P, Artemyev M, Efi mov AE, Nabiev I. Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials. Nanoscale. 2013; 5: 8781–8798. DOI: 10.1039/c3nr02372a.

8. Caplan J, Niethammer M, Taylor II RM, Czymmek KJ. The Power of Correlative Microscopy: Multi-Modal, MultiScale, Multi-Dimensional. Curr. Opin. Struct. Biol. 2011; 21: 686–693. DOI: 10.1016/j.sbi.2011.06.010.

9. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys. Rev. Lett. 1986; 56 (9): 930–933. DOI: 10.1103/PhysRevLett.56.930.

10. Magonov SN, Reneker DH. Characterization of polymer surfaces with atomic force microscopy. Annu. Rev. Mater. Sci. 1997; 27 (1): 175–222. DOI: 10.1146/annurev. matsci.27.1.175

11. Gallyamov MO. Scanning Force Microscopy as Applied to Conformational Studies in Macromolecular Research. Macromol. Rapid Commun. 2011; 32 (16): 1210–1246. DOI: 10.1002/marc.201100150.

12. Alekseev A, Loos J, Koetse MM. Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM). Ultramicroscopy. 2006; 106 (3): 191–199. DOI: 10.1016/j.ultramic.2005.07.003.

13. Zhang L, Sakai T, Sakuma N, Ono T, Nakayama K. Nanostructural conductivity and surface-potential study of low-fi eld-emission carbon fi lms with conductive scanning probe microscopy. Appl. Phys. Lett. 1999; 75: 3527–3529. DOI: 10.1063/1.125377.

14. Hartmann U. Magnetic force microscopy: Some remarks from the micromagnetic point of view. J. Appl. Phys. 1988; 64 (3): 1561–1564. DOI: 10.1063/1.341836

15. Noy A, Vezenov DV, Lieber CM. Chemical Force Microscopy. Annu. Rev. Mater. Sci. 1997; 27: 381–421. DOI: 10.1146/annurev.matsci.27.1.381.

16. Zlatanova J, Lindsay SM, Leuba SH. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 2000; 74 (1–2): 37–61. DOI: 10.1016/S0079-6107(00)00014-6.

17. Efi mov AE, Tonevitsky AG, Dittrich M, Matsko NB. Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. Journal of Microscopy. 2007; 226 (3): 207–217. DOI: 10.1111/j.13652818.2007.01773.x.

18. Efi mov AE, Gnaegi H, Schaller R, Grogger W, Hofer F, and Matsko NB. Analysis of native structure of soft materials by cryo scanning probe tomography. Soft. Matter. 2012; 8: 9756–9760. doi:10.1039/c2sm26050f.

19. Hunt A, Ewing R. Percolation Theory for Flow in Porous Media, Lect. Notes Phys. Springer: Berlin Heidelberg, 2009: 771.

20. Efi mov AE, Moisenovich MM, Bogush VG, Agapov II. 3D nanostructural analysis of silk fi broin and recombinant spidroin 1 scaffolds by scanning probe nanotomography. RSC Adv. 2014; 4: 60943–60947. DOI: 10.1039/c4ra08341e.

21. Efi mov AE, Agapova OI, Parfenov VA, Pereira FDAS, Bulanova EA, Mironov VA, Agapov II. Investigating the Micro- and Nanostructure of Microfi brous Bioсompatible Polyurethane Scaffold by Scanning Probe Nanotomography. Nanotechnol. Russ. 2015; 10 (11–12): 925–929. DOI: 10.1134/S1995078015060038.

22. Thiele S, Vierrath S, Klingele M, Zengerle R. Tomographic Analysis of Polymer Electrolyte Fuel Cell Catalyst Layers: Methods, Validity and Challenges. ECS Trans. 2015; 69 (17): 409–418. DOI 10.1149/06917.0409ecst.

23. Alekseev A, Efi mov A, Lu K, Loos J. Three-dimensional electrical property reconstruction of conductive nanocomposites with nanometer resolution. Advanced Materials. 2009; 21 (48): 4915–4919. DOI: 10.1002/ adma.200901754.

24. Alekseev A, Chen D, Tkalya EE, Ghislandi MG, Syurik Y, Ageev O et al. Local Organization of Graphene Network Inside Graphene/Polymer Composites. Adv. Funct. Mater. 2012; 22 (6): 1311–1318. DOI: 10.1002/ adfm.201101796.

25. Mochalov KE, Efi mov AE, Bobrovsky A, Agapov II, Chistyakov AA, Oleinikov VA et al. Combined Scanning Probe Nanotomography and Optical Microspectroscopy: A Correlative Technique for 3D Characterization of Nanomaterials. ACS Nano. 2013; 7 (10): 8953–8962. doi: 10.1021/nn403448p.

26. Brazhnik K, Sokolova Z, Baryshnikova M, Bilan R, Efi mov A, Nabiev I, Sukhanova A. Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specifi c antigens in clinical human serum samples. Nanomedicine: Nanotechnology, Biology, and Medicine. 2015; 11: 1065–1075. DOI: 10.1016/j.nano.2015.03.003.

27. Bilan RS, Krivenkov VA, Berestovoy MA, Efi mov AE, Agapov II, Samokhvalov PS et al. Engineering of Optically Encoded Microbeads with FRET-Free Spatially Separated Quantum-Dot Layers for Multiplexed Assays. ChemPhysChem. 2017; 18 (8): 970–979. DOI: 10.1002/cphc.201601274.

28. Efi mov AE, Agapova OI, Agapov II. Scanning Probe Nanotomograph: Features of Engineering Solutions for Low-Temperature Analysis of Biomedical Materials. Biomed. Eng. 2015; 49: 132–135. DOI: 10.1007/s10527015-9514-x.

29. Efi mov AE, Agapova OI, Safonova LA., Bobrova MM, Volkov AD, Khamkhash L, Agapov II. Cryo scanning probe nanotomography study of the structure of alginate microcarriers. RSC Adv. 2017; 7: 8808–8815. DOI: 10.1039/c6ra26516b.

30. Сургученко ВА, Пономарева АС, Ефимов АЕ, Немец ЕА, Агапов ИИ, Севастьянов ВИ. Особенности адгезии и пролиферации фибробластов мыши линии NIH/ЗТЗ на пленках из бактериального сополимера поли (3-гидроксибутират-CO-3-гидроксивалерата) с различной шероховатостью поверхности. Вестник трансплантологии и искусственных органов. 2012; 14 (1): 72–77. DOI:10.15825/1995-1191-2012-1-72-77. Surguchenko VA, Ponomareva AS, Efi mov AE, Nemec EA, Agapov II, Sevast’yanov VI. Osobennosti adgezii i proliferacii fi broblastov myshi linii NIH/ZTZ na plenkah iz bakterial’nogo sopolimera poli (3-gidroksibutirat-CO-3-gidroksivalerata) s razlichnoj sherohovatost’yu poverhnosti. Vestnik transplantologii i iskusstvennyh organov. 2012; 14 (1): 72–77. DOI:10.15825/1995-1191-2012-1-72-77.

31. Vasilets VN, Surguchenko VA, Ponomareva AS, Nemetz EA, Sevastianov VI, Jin Woo Bae JW, Park KD. Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fi broblasts. Macromol. Res. 2015; 23: 205–213. DOI: 10.1007/s13233-015-3025-1

32. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cellsubstrate interface. Biomaterials. 2012; 33: 5230–5246. DOI: 10.1016/j.biomaterials.2012.03.079.

33. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology. 2011; 6: 13–22. DOI: 10.1038/nnano.2010.246.

34. Агапова ОИ, Ефимов АЕ, Мойсенович ММ, Богуш ВГ, Агапов ИИ. Сравнительный анализ трехмерной наноструктуры пористых биодеградируемых матриксов из рекомбинантного спидроина и фиброина шелка для регенеративной медицины. Вестник трансплантологии и искусственных органов. 2015; 17 (2): 37–44. DOI:10.15825/1995-1191-2015-2-37-44. Agapova OI, Efi mov AE, Mojsenovich MM, Bogush VG, Agapov II. Sravnitel’nyj analiz trekhmernoj nanostruktury poristyh biodegradiruemyh matriksov iz rekombinantnogo spidroina i fi broina shelka dlya regenerativnoj mediciny. Vestnik transplantologii i iskusstvennyh organov. 2015; 17 (2): 37–44. DOI:10.15825/1995-1191-2015-2-37-44.

35. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 2010; 16 (7): 814–820. DOI: 10.1038/nm.2170.

36. Онищенко НА, Крашенинников МЕ, Шагидулин МЮ, Боброва ММ, Севастьянов ВИ, Готье СВ. Гепатоспецифический мелкодисперсный матрикс как важный компонент имплантируемых клеточно-инженерных конструкций вспомогательной печени. Гены и клетки. 2016; 11 (1): 54–60. Onishchenko NA, Krasheninnikov ME, Shagidulin MYu, Bobrova MM, Sevast’yanov VI, Got’e SV. Gepatospecifi cheskij melkodispersnyj matriks kak vazhnyj komponent implantiruemyh kletochno-inzhenernyh konstrukcij vspomogatel’noj pecheni. Geny i kletki. 2016; 11 (1): 54–60.

37. Glancy B, Hartnell LM, Malide D, Yu Z-X, Combs CA, Connelly PS et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015; 523: 617– 620. DOI: 10.1038/nature14614.

38. Sulkin MS, Yang F, Holzem KM, Van Leer B, Bugge C, Laughner JI et al. Nanoscale three-dimensional imaging of the human myocyte. J. Struct. Biol. 2014; 188 (1): 55–60. DOI: 10.1016/j.jsb.2014.08.005.


Review

For citations:


Efimov A.E., Agapova O.I., Safonova L.A., Bobrova M.M., Agapov I.I. Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography. Russian Journal of Transplantology and Artificial Organs. 2017;19(4):78-87. (In Russ.) https://doi.org/10.15825/1995-1191-2017-4-78-87

Views: 1217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)