Эффективность поздней конверсии с микофенолатов на эверолимус у реципиентов почечного трансплантата с сопутствующими онкологическими заболеваниями


https://doi.org/10.15825/1995-1191-2017-4-16-26

Полный текст:


Аннотация

Новообразования наряду с сердечно-сосудистыми и инфекционными заболеваниями входят в число ведущих причин смерти реципиентов с функционирующим почечным трансплантатом. Одним из подходов к решению этой проблемы считают применение ингибиторов пролиферативного сигнала (ИПС), которое снижает частоту онкологических осложнений в сравнении с традиционной иммуносупрессией.

Цель исследования: изучение эффективности и безопасности применения эверолимуса в сочетании с минимизированной дозой ингибиторов кальциневрина у пациентов с посттрансплантационными новообразованиями.

Материалы и методы. В исследование включены 62 реципиента почечного трансплантата (РПТ), которым в связи с диагностированным онкологическим заболеванием через 83,5 ± 69,3 мес. после трансплантации почки выполнялась конверсия с микофенолатов на эверолимус. Длительность наблюдения после конверсии составила 35,5 ± 26,9 мес. Эффективность терапии оценивали по выживаемости реципиентов и методики иммуносупрессии, динамике функции трансплантата и протеинурии. Выживаемость реципиентов сравнивали с выживаемостью в группе исторического контроля (n = 145), в которой онкобольные эверолимус не получали.

Результаты. 10- и 15-летняя выживаемость РПТ в группе конверсии составила 92 и 85,7%, в то время как в группе контроля этот показатель снижался до 61,1 и 52,8% соответственно (p < 0,0003). Выживаемость методики иммуносупрессии через 1 год после начала терапии составила 86,5%, через 3 года – 64,2%, а к концу 5-го года вероятность продолжения лечения эверолимусом снижалась до 50,8%, главным образом, вследствие развития протеинурии и других нежелательных явлений. Частота рецидивов опухолей среди продолжавших терапию в течение 35 (26; 60) мес. составила 13,2%. Сывороточный креатинин в динамике повысился с 0,13 ± 0,04 до 0,15 ± 0,09 ммоль/л, p < 0,031, а суточная протеинурия – с 0,18 ± 0,25 до 0,75 ± 1,63 г/сут, p < 0,011.

Заключение. Применение ИПС у РПТ с онкологическими заболеваниями достоверно повышает отдаленную выживаемость больных в сравнении с контрольной группой и демонстрирует относительно невысокую частоту рецидивов (13,2% случаев) новообразований в течение 35 мес. терапии. Вместе с тем применение ИПС возможно не у всех пациентов и уже через 5 лет после его начала прерывается почти у половины из них в связи с нарастающей протеинурией и серьезными нежелательными явлениями. 


Об авторах

И. Г. Ким
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФБУН «Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского» Роспотребнадзора.
Россия
Москва.


Н. А. Томилина
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; Московский государственный медико-стоматологический университет им. А.И. Евдокимова.
Россия
Москва.


Н. Д. Федорова
ГБУЗ «Городская клиническая больница № 52» Департамента здравоохранения города Москвы».
Россия
Москва.


И. В. Островская
ГБУЗ «Городская клиническая больница № 52» Департамента здравоохранения города Москвы».
Россия
Москва.


И. А. Скрябина
ГБУЗ «Городская клиническая больница № 52» Департамента здравоохранения города Москвы».
Россия
Москва.


Список литературы

1. Gutierrez-Dalmau A, Campistol JM. Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review. Drugs. 2007; 67 (8): 1167–1198.

2. USRDS, Annual Report AJKD. 2009.

3. El-Zoghby ZM, Stegall MD, Lager DJ, Kremers WK, Amer H, Gloor JM et al. Identifying specifi c causes of kidney allograft loss. Am. J. Transplant. 2009; 9: 527–535.

4. Howard RJ, Patton PR, Reed AI, Hemming AW, Van der Werf WJ, Pfaff WW et al. The changing causes of graft loss and death after kidney transplantation. Transplantation. April 2002; 73 (12): 1923–1928. ISSN: 0041-1337.

5. Webster A, Chapman J. Australia and New Zealand dialysis and transplant registry: the 28th annual report. 2005; 10, Cancer report [online]. Available from URL: http:// www. anzdata.org.au/

6. ANZDATA Registry 38th Report, Chapter 8. Transplantation. Adelaide, Australia. 2016. Availableat: http://www. anzdata.org.au)

7. Lutz J, Heemann U. Tumours after kidney transplantation. Curr. Opin Urol. 2003; 13 (2): 105–109.

8. Iacob G, Lucan M, Lucan V, Elec A, Munteanu A, Adrian B. The risk of post-Transplant malignancy. Clujul Medical. 2012; 85 (4): 625–629.

9. Kapoor A. Malignancy in kidney transplant recipients. Drugs. 2008; 68 Suppl 1: 11–19.

10. Penn I. Cancers in renal transplant recipients. Advancein Renal Replacement Therapy. 2000 Apr; 7 (2): 147–156.

11. Vajdic CM, McDonald SP, McCredie MR, van Leeuwen MT, Stewart JH, Law M et al. Cancer incidence before and after kidney transplantation. JAMA. 2006; 296 (23): 2823–2831.

12. Vajdic CM, van Leeuwen MT. Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer. 2009; 125: 1747–1754.

13. Berg D, Otley CC. Skin cancer in organ transplant recipients: epidemiology, pathogenesis and management. J. Am. Acad. Dermatol. 2002; 47: 1–17.

14. Wong G, Chapman JR. Cancers after renal transplantation. Transplant. Rev. (Orlando). 2008; 22: 141–149.

15. O’Reilly Zwald F, Brown M. Skin cancer in solid organ transplant recipients: advance in therapy and management. Part I. Epidemiology of skin cancer in solid organ transplant recipients. J. Am. Acad. Dermatol. 2011; 65: 253–261.

16. Birkeland SA, Lokkegaard H, Storm HH. Cancer risk in patients on dialysis and after renal transplantation. Lancet. 2000; 355: 1886.

17. Marcen R, Pascual J, Tato AM, Teruel JL, Villafruela JJ, Fernandez M et al. Infl uence of immunosuppression on the prevalence of cancer after kidney transplantation. Transplant. Proc. 2003; 35: 1714–1716.

18. Bouwes-Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O’Sullivan B et al. The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplant. 1996; 61 (5): 715–721.

19. Ramsay HM, Fryer AA, Hawley CM, Smith AG, Harden PN. Non-melanoma skin cancer risk in the Queensland renal transplant population. Br. J. Dermatol. 2002; 147: 950–956.

20. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N. Engl. J. Med. 2003; 348: 1681.

21. Alberu J, Pascoe MD, Campistol JM, Schena FP, Rial Mdel C, Polinsky M et al. Sirolimus CONVERT Trial Study Group. Lower malignancy rates in renal allograft recipients converted to sirolimus-based, calcineurin inhibitor-free immunotherapy: 24-month results from the CONVERT trial. Transplantation. 2011 Aug 15; 92 (3): 303–310.

22. Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD. Maintenance immunosuppression with targetof-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation. 2005; Oct 15; 80 (7): 883–889.

23. Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J. Am. Soc. Nephrol. 2006; 17 (2): 581–589, Convert.

24. Lorber MI, Mulgaonkar S, Butt KM, Elkhammas E, Méndez R, Rajagopalan PR et al. Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: A 3-year randomized, multicenter, phase III study. Transplantation. 2005; 80 (2): 244–252.

25. Vitko S, Margreiter R, Weimar W, Dantal J, Kuypers D, Winkler M et al. Three-year effi cacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients. A. J. Transplant. 2005; 5 (10): 2521–2530.

26. Bruns CJ, Koehl GE, Guba M, Yezhelyev M, Steinbauer M, Seeliger H et al. Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy agains tpancreatic cancer. Clin. Cancer. Res. 2004; 10: 2109.

27. Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N. Engl. J. Med. 2005; 352: 1317–1323.

28. Gutierrez-Dalmau A, Sanchez-Fructuoso A, Sanz-Guajardo A, Mazuecos A, Franco A, Rial MC et al. Effi cacy of conversion to sirolimus in posttransplantation Kaposi’s sarcoma. Transplant. Proc. 2005; 37: 3836–3838.

29. Boratynska M, Watorek E, Smolska D, Patrzalek D, Klinger M. Anticancer effect of sirolimus in renal allograft recipients with de novo malignancies. Transplant. Proc. 2007; 39: 2736–2739.

30. Zmonarski SC, Boratynska M, Rabczynski J, Kazimierczak K, Klinger M. Regression of Kaposi’s sarcoma in renal graft recipients after conversion to sirolimus treatment. Transplant. Proc. 2005; 37 (2): 964–966.

31. Campistol JM, Guitierrez-Dalmau A, Torregrosa JV. Conversion to sirolimus: a successful treatment for posttransplantation Kaposi’s sarcoma. Transplantation. 2004; 77: 760–762.

32. Diekmann F, Budde K, Oppenheimer F, Fritsche L, Neumayer HH, Campistol JM et al. Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am. J. Transplant. 2004; 4 (11): 1869–1875.

33. Tedesco-Silva HJr, Cibrik D, Johnston T, Lackova E, Mange K, Panis C et al. Everolimus plus reduced-exposure cyclosporine versus mycophenolic acid plus standard-exposure cyclosporine in renal-transplant recipients. Am. J. Transplant. 2010; 10 (6): 1401–1413.

34. Chan L, Cibrik D, Johnston T. Correlation of everolimus exposure with effi cacy and safety outcomes: Results from a multicenter study in renal transplantation using reduced CsA exposure: 2027. Transplantation. 2010; 90: 111.

35. Ruiz JC, Sanchez A, Rengel M. Use of the new proliferation signal inhibitor everolimus in renal transplant patients in Spain: Preliminary results of the EVERODATA registry. Transplant. Proc. 2007; 39 (7): 2157–2159.

36. Bemelman FJ, de Maar EF, Press RR, van Kan HJ, ten Berge IJ, Homan van der Heide JJ et al. Minimization of maintenance immunosuppression early after renal transplantation: An interim analysis. Transplantation. 2009; 88 (3): 421–428.

37. Villeneuve PJ, Schaubel DE, Fenton SS, Shepherd FA, Jiang Y, Mao Y. Cancer incidence among Canadian kidney transplant recipients. Am. J. Transplant. 2007; 7: 941–948.

38. Adami J, Gäbel H, Lindelöf B, Ekström K, Rydh B, Glimelius B et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br. J. Cancer. 2003; 89: 1221–1227.

39. Moloney FJ, Comber H, O’Lorcain P, O’Kelly P, Conlon PJ, Murphy GM. A population based study of skin cancer incidence and prevalence in renal transplant recipients. Br. J. Dermatol. 2006; 154: 498–504.

40. Dantal J, Pohanka E. Malignancies in renal transplantation: an unmet medical need. Nephrol. Dial. Transplant. 2007; 22 Suppl 1: i4–i10.

41. Kasiske BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am. J. Transplant. 2004; Jun; 4 (6): 905–913.

42. Chapman JR, Webster AC. Cancer after renal transplantation: the next challenge. Am. J. Transplant. 2004; 4: 841–842.

43. Cherikh WS, Kauffman HM, McBride MA, Maghirang J, Swinnen LJ, Hanto DW et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation. 2003; 76 (9): 1289–1293.

44. Ducloux D, Kazory A, Challier B, Coutet J, BressonVautrin C, Motte G et al. Long-term toxicity of antithymocyte globulin induction may vary with choice of agent: a single-center retrospective study. Transplantation. 2004; Apr 15; 77 (7): 1029–1033.

45. Opelz G, Naujokat C, Daniel V, Terness P, Döhler B et al. Disassociation between risk of graft loss and risk of nonHodgkin lymphoma with induction agents in renal transplant recipients. Transplantation. 2006; 81 (9): 1227–1233.

46. Bustami RT, Ojo AO, Wolfe RA, Merion RM, Bennett WM, McDiarmid SV et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric fi rst kidney transplant recipients. Am. J. Transplant. 2004; 4 (1): 87–93.

47. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999: 397: 530–535.

48. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Medicine. 2002; 8 (2): 128–135.

49. Koehl GE, Andrassy J, Guba M, Richter S, Kroemer A, Scherer MN et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation. 2004; 77: 1319–1326.

50. Swann PF, Waters TR, Moulton DC, Xu Y-Z, Edwards M, Mace R et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996 Aug 23; 273 (5278): 1109–1111.

51. Oliveira VD, Zankl H, Rath T. Mutagenic and cytotoxic effects of immunosuppressive drugs on humanlymphocyte cultures. Exp. Clin. Transplant. 2004 Dec; 2 (2): 273–279.

52. Blaheta RA, Bogossian H, Beecken WD, Wolf-Dietrich J, Dietger HC, Makarevic J et al. Mycophenolate mofetil increases adhesion capacity of tumor cells in vitro. Transplantation. 2003; Dec 27; 76 (12): 1735–1741.

53. Leckel K, Beecken WD, Jonas D, Oppermann E, Coman MC, Beck KF et al. The immunosuppressive drug mycophenolate mofetil impairs the adhesion capacity of gastrointestinal tumour cells. Clin. Exp. Immunol. 2003 Nov; 134 (2): 238–245.

54. Engl T, Makarevic J, Relja B, Natsheh I, Muller I, Beecken WD et al. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy. BMC Cancer. 2005; Jan 11; 5: 4.

55. Neyts J, Andrei G, DeClercq E. The novel immunosuppressive agent mycophenolate mofetil markedly potentiates the antiherpesvirus activities of acyclovir, ganciclovir, and penciclovir in vitro and in vivo. Antimicrob Agents Chemother. 1998 Feb; 42 (2): 216–222.

56. Campbell SB, Wolker R, See Tai S, Jiang Q, Russ GR. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am. J. Transplant. 2012; 12: 1146–1156.

57. McCormick F. Signalling networks that cause cancer. Trends Cell Biol. 1999; 9 (12): M53–6.

58. Luo J, Manning BD, Cantley LC. Targeting the PI3KAkt pathway in human cancer: rationale and promise. Cancer Cell. 2003; 4 (4): 257–62193, 194.

59. Zoncu R, Efeyan A, Sabatini DM. mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology. 2011; 12 (1): 21–35.

60. Wullschleger S, Loewith R, Hall MN. mTOR signaling in growth and metabolism. Cell. 2006 Feb 10; 124 (3): 471–484.

61. Terada N, Lucas JJ, Szepesi A, Franklin RA, Takase K, Gelfand EW. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun. 1992; 186 (3): 1315–1321.

62. Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992; 358 (6381): 70–73.

63. Guertin DA, Sabatini DM. Defi ning the role of mTOR in cancer. Cancer Cell. 2007; 12: 9–22.

64. Cao C, Wan Y. Parameters of protection against ultraviolet radiation-induced skin cell damage. J. Cell. Physiol. 2009; 220: 277–284. 197.

65. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 2005 Apr; 16 (4): 525–537.

66. Mohsin N, Budruddin M, Pakkyara A, Darweesh A, Nayyer M, Amitabh J et al. Complete regression of visceral Kaposi’s sarcoma after conversion to sirolimus. Exp. Clin. Transplant. 2005; 3: 366–369.

67. Gheith O, Bakr A, Wafa E, Fouda A, El Agroudy A, Refaie A et al. Sirolimus for visceral and cutaneous Kaposi’s sarcoma in a renal-transplant recipient.et al. Clin. Exp. Nephrol. 2007; 11: 251–254.

68. Volkow P, Zinser JW, Correa-Rotter R et al. Molecularly targeted therapy for Kaposi’s sarcoma in a kidney transplant patient: case report, «what worked and what did not». BMC Nephrol. 2007; 8: 6.

69. Euvrard S, Morelon E, Rosteing L, Goffi n E, Brocard A, Trommeetal I. Sirolimus and secondary skin-cancer in kidney transplantation. N. Engl. J. Med. 2012; 367 (4): 329–339.

70. Mjörnstedt1 L, Sørensen SS, von zur Mühlen B, Jespersen B, Hansen JM, Bistrup C et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation. Transplant International. 2015; 28 (1): 42–51.

71. Budde K, Becker T, Arns W, Sommerer C, Reinke P, Eisenberger U et al. ZEUS Study Investigators. Everolimusbased, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open label, randomized, controlled trial. Lancet. 2011; 5; 377 (9768): 837–847.

72. Cibrik D, Silva H, Tedesco Jr, Vathsala A, Lackova E, Cornu-Artis C et al. Randomized Trial of EverolimusFacilitated Calcineurin Inhibitor Minimization Over 24 Months in Renal Transplantation. Transplantation. 2013; 95: 933–942.

73. Sommerer C, Budde K, Kliem V, Witzke O, Guba M, Jacobi J et al. Effi cacy and Safety of Three Different Treatment Regimen in de novo Renal Transplant Patients: Month 48 Follow-Up Results of the HERAKLES Trial [abstract]. Am. J. Transplant. 2015; 15 (suppl 3).

74. Rondeau E, Cassuto E, Vuiblet V, Legendre C, Merville P, Le Y. 24 Month Post Transplantation Follow Up of the Certitem Trial [abstract]. Am. J. Transplant. 2015; 15 (suppl 3).

75. Kasiske BL, Nashan B, Rial MC, Raffaele P, Russ G, Campistol J et al. Clinical Study a Prospective, Multinational Pharmacoepidemiological Study of Clinical Conversion to Sirolimus Immunosuppression after Renal Transplantation. Journal of Transplantation. 2012; 2012, ID 107180: 16.

76. Holdaas H, Rostaing L, Serón D, Cole E, Chapman J, Fellstrøm B et al. On Behalf of the ASCERTAIN Investigators. Conversion of Long-Term Kidney Transplant Recipients From Calcineurin Inhibitor Therapy to Everolimus: A Randomized, Multicenter, 24-Month Study Transplantation. 2011; 92: 410–418.

77. Schena FP, Pascoe MD, Alberu J, Del Carmen Rial M, Oberbauer R, Brennan DC et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month effi cacy and safety results from the CONVERT trial. Transplantation. 2009; 2: 233–242.

78. Letavernier, Bruneval P, Vandermeersch S, Peres J, Mandet C, Belair MF et al. Sirolimus interacts with pathways essential for podocyte integrity. Nephrology Dialysis Transplantation. 2009; 24; 2: 630–638.

79. Vollenbröker B, George B, Wolfgart M, Saleem MA, Pavenstädt H, Weide T. mTOR regulates expression of slit diaphragm protins and cytoskeleton structure in podocytes. American Journal of Physiology. 2009; 296; 2: F418–F426.

80. Izzedine H, Brocheriou I, Frances C. Post-transplantation proteinuria and sirolimus. New Eng. J. Med. 2005; 353, 2088–2089.

81. Horita Y, Miyazaki M, Koji T, Kobayashi N, Shibuya M, Razzaque MS et al. Expression of vascular endothelial growth factor and its receptors in rats with proteinoverload nephrosis. Nephrol. Dial. Transplant. 1998; 13: 2519–2528.

82. Laurinavicius A, Hurwitz S, Rennke HG. Collapsing glomerulopathy in HIV and non-HIV patients: a clinicopathological and follow-up study. Kidney Int. 1999; 56: 2203–2213.

83. Letavernier E, Legendre C. mToR inhibitors-induced proteinuria: Mechanisms, signifi cance, and management. Transplant. Rev. (Orlando). 2008; 22 (2): 125–130.

84. Straathof-Galema L, Wetzels JF, Dijkman HB, Steenbergen EJ, Hilbrands LB. Sirolimus-associated heavy proteinuria in a renal transplant recipient: Evidence for a tubular mechanism. Am. J. Transplant. 2006; 6 (2): 429–433.

85. Thomas ME, Brunskill NJ, Harris KP, Bailey E, Pringle JH, Furness PN et al. Proteinuria induces tubular cell turnover: A potential mechanism for tubular atrophy. Kidney Int. 1999; 55: 890–898.

86. Tejera N, Gomez-Garre D, Lazaro A, Gallego-Delgado J, Alonso C, Blanco J et al. Persistent proteinuria upregulates angiotensin II type 2 receptor and induces apoptosis in proximal tubular cells. Am. J. Pathol. 2004; 164: 1817–1826.

87. Munivenkatappa, Haririan A, Papadimitriou JC, Drachenberg CB, Dinits-Pensyand M, Klassen DK. Tubular epithelial cell and podocyte apoptosis with de novo sirolimus based immunosuppression in renal allograft recipients with DGF HistolHistopathol. 2010; 25: 189–196.


Дополнительные файлы

Для цитирования: Ким И.Г., Томилина Н.А., Федорова Н.Д., Островская И.В., Скрябина И.А. Эффективность поздней конверсии с микофенолатов на эверолимус у реципиентов почечного трансплантата с сопутствующими онкологическими заболеваниями. Вестник трансплантологии и искусственных органов. 2017;19(4):16-26. https://doi.org/10.15825/1995-1191-2017-4-16-26

For citation: Kim I.G., Tomilina N.A., Fedorova N.D., Ostrovskaya I.V., Skryabina I.A. Efficiency of late conversion from mycophenolate mofetil to everolimus in kidney graft recipients with posttransplant malignancy. Russian Journal of Transplantology and Artificial Organs. 2017;19(4):16-26. (In Russ.) https://doi.org/10.15825/1995-1191-2017-4-16-26

Просмотров: 129


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)