Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ТКАНЕИНЖЕНЕРНЫХ КОНСТРУКЦИЙ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ В ЛЕЧЕНИИ САХАРНОГО ДИАБЕТА 1-го ТИПА

https://doi.org/10.15825/1995-1191-2016-4-133-145

Полный текст:

Аннотация

Наиболее эффективным методом лечения сахарного диабета 1-го типа по-прежнему является аллотранс-плантация островков поджелудочной железы, которая при сочетании благоприятных условий (достаточное количество выделенных островков, удачная комбинация иммуносупрессивных препаратов) способна достичь инсулиннезависимости реципиентов на протяжении нескольких лет. Однако постоянный дефицит донорских поджелудочных желез и ограниченность выживания островков в организме реципиента не позволяют увеличить количество таких трансплантаций и повысить их эффективность. В настоящем обзоре дан критический анализ работ российских и зарубежных авторов по созданию тканеинженерных конструкций поджелудочной железы, направленных на решение трех главных проблем трансплантации островков поджелудочной железы: 1) дефицит донорского материала; 2) необходимость проведения иммуносупрессивной терапии; 3) непродолжительность выживания и функциональной активности пересаженных островков.

Об авторах

Г. Н. Скалецкая
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва, Российская Федерация


Н. Н. Скалецкий
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Адрес: 123182, Москва, ул. Щукинская, д. 1. Тел.: (499) 190-42-66, (903) 790-95-39



В. И. Севастьянов
ФГБУ «Федеральный научный центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва, Российская Федерация


Список литературы

1. Atala A, Lanza R, Thompson J, Nerem R. Principles of regenerative medicine, Academic Press is an imprint of Elsevier, First edition, 2008.

2. Биология стволовых клеток и клеточные технологии: учебное пособие. Под редакцией М.А. Пальцева. М.: Медицина, Шик, 2009. Том 1 и 2. Biologia stvolovykh kletok i kletochniye tekhnologii: uchebnoye posobiye. Pod redaktsiyey M.A. Paltseva. M.: Meditsina, Shik, 2009. Tom 1 i 2.

3. Биосовместимые материалы: учебное пособие. Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011. Biosovmestimiye materialy: uchebnoye posobiye. Pod redaktsiyey V.I. Sevastianova, M.P. Kirpichnikova. М.: МIА, 2011.

4. Atala A, Baue SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006; 367: 1241–1247.

5. Macchiarini P, Jungebluth P, Go T. Clinical transplantation of a tissue-engineered airway. Lancet. 2008; 372: 2023–2028.

6. Gan MJ, Albanese-O’Neill A., Haller MJ. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr. Probl. Pediatr. Adolesc. Health Care. 2012; 42: 269–291.

7. Shapiro A, Lakey J. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000; 343: 230–238.

8. Ryan EA, Lakey JRT, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A et al. Five- year follow-up after clinical islet transplantation. Diabetes. 2005; 54: 2060–2069.

9. Wahren J, Johansson B-L, Wallberg-Henriksson H. Does C-peptide have a physiological role? Diabetologia. 1996; 37, suppl. 2: 99–107.

10. Шумаков ВИ, Скалецкий НН. Трансплантация островковых клеток поджелудочной железы. Трансплантология: руководство для врачей. Под ред. В.И. Шумакова. М.: МИА, 2006: 418–430. Shumakov VI, Skaletskiy NN. Transplantatsia ostrovkovykh kletok podzheludochnoy zhelezy. Transplantologia: rukovodstvo dla vrachey. Pod red. VI. Shumakova. М.: MIA, 2006: 418–430.

11. Amer LD, Mahoney MJ, Bryant SJ. Tissue Engineering Approaches to Cell-Based Type 1 Diabetes. Therapy Tissue Engineering Part B: Reviews. October 2014; 20 (5): 455–467. doi: 10.1089/ten.teb.2013.0462.

12. Bosco D, Armanet M, Morel P, Niclauss N. Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes. 2010; 59.

13. Cabrera O. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 2334–2339.

14. Dufrane D, Gianello P. Pig islet for xenotransplantation in human: structural and physiological compatibility for human clinical application. Transplant. Rev. (Orlando). 2012; 26: 183–188.

15. Шрейбер В. Патофизиология желез внутренней секреции. Прага: Медицинское издательство, 1987: 414. Shreiber V. Patofi ziologia zhelez vnutrenney sekretsii. Praga: Meditsinskoye izdatelstvo, 1987: 414.

16. Marigliano M, Bertera S, Grupillo M, Trucco M, Bottino R. Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview. Curr. Diab. Rep. 2011; 11: 402–412.

17. Dufrane D, Gianello P. Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J. Gastroenterol. 2012; 18: 6885–6893.

18. Van der Windt DJ. Clinical Islet Xenotransplantation: How Close Are We? Diabetes. 2012; 61: 3046–3055.

19. Sumi S, Gu Y, Hiura A, Inoue K. Regenerative medicine for insulin defi ciency; creation of pancreatic islets and bioartifi cial pancreas. J. Hepatobiliary Pancreat. Sci. 2011; 18 (1): 6–12.

20. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001; 292: 1389–1394.

21. Aguayo-Mazzucato C, Bonner-Weir S. Stem cell therapy for type 1 diabetes mellitus. Nat. Rev. 2010; 6: 139–149.

22. D’Amour K, Bang AG, Eliazer S. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006; 24: 1392– 1311.

23. Shi Y. Generation of functional insulin-producing cells from human embryonic stem cells in vitro. Methods Mol. Biol. 2010; 636: 79–85.

24. Chandra V, Phadnis S, Nair P.D, Bhonde RR. Generation of pancreatic hormone- expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem. Cells. 2009; 27: 1941–1945.

25. Basford CL. The functional and molecular characterisation of human embryonic stem cell-derived insulinpositive cells compared with adult pancreatic beta cells. Diabetologiа. 2012; 55: 358–371.

26. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008 Sep; 8 (9): 726–736. doi: 10. 1038/nri2395.

27. Milanesi A. В-Cell regeneration mediated by human bone marrow mesenchymal stem cells. PLoSOne. 2012; 7: e42177.

28. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004; 53: 1721–1732.

29. Chen L-B, Jiang X-B, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet betacells. World J. Gastroenterol. 2004; 10: 3016–3020.

30. Kroon E, Martinson LA, Kadoya K. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 2008; 26: 443–451.

31. Gabr MM, Sobh MM, Zakaria MM, Refaie AF, Ghoneim MA. Transplantation of insulin- producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp. Clin. Transplant. 2008; 6: 236–241.

32. Chiou SH, Chen SJ, Chang YL. A promotes the reprogramming of placenta-derived multipotent stem cells into pancreatic islets-like and insulin-positive cells. J. Cell Mol. Med. 2010; Feb: 16–22.

33. Bernardo AS, Cho CH, Mason S. Biphasic induction of Pdx 1 in mouse and human embryonic stem cells can mimic development of pancreatic beta-cells. Stem. Cells. 2009; 27: 341–349.

34. Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfi bakhshaiesh N et al. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fi brin gel can differentiate to pancreatic islet beta-cell. Cell Biol. Int. 2014 Oct; 38 (10): 1174–1182. doi: 10.1002/cbin.10314. Epub 2014 Jul 3.

35. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, D.J. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 17438– 17443.

36. Chang C. Mesenchymal stem cells adopt beta-cell fate upon diabetic pancreatic microenvironment. Pancreas. 2009; 38: 275–281.

37. Franquesa M, Hoogduijn MJ, Bestard O, Grinyу JM. Immunomodulatory effect of mesenchymal stem cells on B cells. Front. Immunol. 2012; 3: 212.

38. Hematti P, Kim J, Stein AP, Kaufman D. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant. Rev. (Orlando). 2013; 27: 21–29.

39. Jun Y, Kang AR, Lee JS, Park S-J, Lee DY, Moon S-H. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials. 2014; 35: 4815–4826.

40. Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia. 2005; 48: 49–57.

41. Song K-H. In vitro transdifferentiation of adult pancreatic acinar cells into insulinexpressingcells. Biochem. Biophys. Res. Commun. 2004; 316: 1094–1100.

42. Minami K, Seino S. Pancreatic acinar-to-beta cell transdifferentiation in vitro. Front. Biosci. 2008; 1: 5824– 5837.

43. Yamada S, Yamamoto Y, NagasawaM. In vitro transdifferentiation of mature hepatocytes into insulin-producing cells. Endocr. J. 2006; 53: 789–795.

44. Aviv V. Exendin-4 promotes liver cell proliferation and enhances the PDX-1-induced liver to pancreas transdifferentiation process. J. Biol. Chem. 2009; 284: 33509–33520.

45. Lu Y, Li Y. Transdifferentiation of hepatic oval cells into pancreatic islet beta-cells. Front. Biosci. 2012; 17: 2391–2395.

46. Ulrich AB, Schmied BM, Standop J, Schneider MB, Pour PM. Pancreatic celllines: a review. Pancreas. 2002; 24: 111–120.

47. Shimoda M., Chеn S., Noduchi H., Matsumoto S., Grayburn P.A. Neurogenic differentiation directs differentiation of cytokeratin 19 – positive human pancreatic nonendocrine cells into insulin-producing cells. Transpl. Proc. 2010; 42 (6): 2071–2074.

48. Скалецкий НН, Кирсанова ЛА, Севастьянов ВИ. Разработка и экспериментальное исследование ткане-инженерных конструкций поджелудочной железы из культур островковых клеток поджелудочной железы и биодеградируемых носителей с целью стимуляции регенерации β-клеток у больных сахарным диабетом. Трансплантология: итоги и перспективы. 2013; V: 140–152. Skaletskiy NN., Kirsanova LA., Sevastianov VI. Razrabotka i experimentalnoye issledovaniye tkaneinzhenernykh konstruktsiy podzheludochnoy zhelezy iz kultur ostrovkovykh kletok podzheludochnoy zhelezy i biodegradiruemykh nositeley s tselyu stimulatsii regeneratsii β-kletok u bolnykh sakharnym diabetom. Transplantologia: itogi i perspektivy. 2013; V: 140–152.

49. Lee S-H, Hao E, Savinov AY, Geron I, Strong AJ, Itkin-Ansari P. Human B-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation. 2009; 87 (7): 983–991.

50. Smith RN, Kent SC, Nagle J, Selig M, Lafrate AJ, Najafi an N et al. Pathology of an islet transplant 2 years after transplantation: evidence for anonimmunological loss. Transplantation. 2008; 86 (7): 54–62.

51. Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trendsand beyond. Cell Tissue Res. 2013; 352: 123–131.

52. Saito H, Takeuchi M, Chida K, Miyajima A. Generation of glucose- responsivefunctional islets with a threedimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One. 2011; 6: e28209.

53. Daoud J, Asami K, Rosenberg L, Tabrizian M. Longterm in vitro human pancreatic islet culture using three dimensional microfabricated scaffolds. Biomaterials. 2011; 32: 1536–1542.

54. Zhao V, Song C, Zhang W. The three-dimensional nanofiber scaffold culture condition improves viability and function of islets. J. Biomat. Res. A. 2010; 94 (3): 667– 672.

55. Kaufman-Francis K, Koffl er J, Weinberg N., Dor Y. & Levenberg S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PLoS One. 2012; 7: e40741.

56. Hall KK, Gattas-Asfura KM, Stabler CL. Microencapsulation of islets within alginate/poly (ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomat. 2011; 7: 614–624.

57. Mason MN, Mahoney MJ. Inhibition of Gamma-Secretase Activity Promotes Differentiation of Embryonic Pancreatic Precursor Cells into Functional Islet-like Clustersin Poly(Ethylene Glycol) Hydrogel Culture. Tissue Eng. Part A. 2010; 16: 2593– 2603.

58. Zhang Y, Jalili RB, Warnock GL., Ao Z, Marzban L, Ghahary A. Three-dimensional scaffolds reduce islet amyloid formation and enhance function of cultured human islets. Am. J. Pathol. 2012 Oct; 181 (4): 1296–1305.

59. Weber LM, He J, Bradley B., Haskins K, Anseth KS. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater. 2006; 2: 1–8.

60. Cruise G, Hubbel J. In vitro and in vivo performance of porcine islets encapsulated in interfacially polymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant. 1999; 8: 293–306.

61. Weber LM, Hayda KN, Haskins K, Anseth KS. The effects of cell-matrixinteractions on encapsulated beta-cell function within hydrogels functionalized withmatrix-derived adhesive peptides. Biomaterials. 2007; 28: 3004– 3011.

62. Mason MN, Mahoney MJ. Selective beta-Cell Differentiation of Dissociated Embryonic Pancreatic Precursor Cells Cultured in Synthetic Polyethylene Glycol Hydrogels. Tissue Eng. Part A. 2009; 15: 1343–1352.

63. Sabra G, Vermette P. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fi brin infl uences INS-1 cells insulin secretion. Biotechnol. Bioeng. 2013; 110: 619–627.

64. Cheng JY, Raghunath M, Whitelock J, Poole-Warren L. Маtrix components and scaffolds for sustained islet function. Tissue Eng. Part B Rev. 2011. 17: 235–247.

65. Stendahl J., Kaufman D, Stupp S. Extracellular matrix in pancreatic islets: Relevance to scaffold design and transplantation. Cell Transplant. 2009; 18: 1–12.

66. Coronel M., Stabler C. Engineering a local microenvironment for pancreatic islet replacement. Curr. Opin. Biotechnol. 2013; 24: 900–908.

67. Василец ВН. Методы изготовления матриксов. Биосовместимые материалы: учебное пособие. Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011: 229–236. VasiletsVN. Metody izgotovleniya matrixov. Biosovmestimiye materialy: uchebnoye poso biye. Pod red. V.I. Sevastianova, M.P. Kirpichnikova. М.: МIА, 2011: 229– 236.

68. Попов ВК. Имплантаты в заместительной и регенеративной медицине костных тканей. 253–294. Popov VK. Implantaty v zamestitelnoy i regenerativnoy meditsine kostnykh tkaney. 253–294.

69. Hyne RO. The extracellular matrix: not just pretty fi brils. Science. 2009; 326, 1216–1219.

70. Londono R, Badylak SF. Biologic Scaffolds for Regenerative Medicine: Mechanisms of in vivo Remodeling. Annals of Biomedical Engineering. March 2015; 43, Issue 3: 577–592.

71. Deijnen JHM., Hulstaert CE, Wolters GHJ, Schilfgaarde R. Signifi cance of theperi- insular extracellular matrix for islet isolation from the pancreas of rat, dog, pig, and man. Cell Tissue Res. 1992; 267: 139–146.

72. Jiang F-X, Harrison LC. Extracellular signals and pancreatic beta-cell development: a brief review. Mol. Med. 2002; 8: 763–770.

73. Jiang F-X, Georges-Labouesse E, Harrison LC. Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha 6 integrin and alpha-dystroglycan. Mol. Med. 2001; 7: 107–114.

74. Pinkse GGM, Bouwman WP, Jiawan-Lalai R, Terpstra OT, Bruijn JA, Heer de E. Integrin signaling via RGD peptides and anti-1 antibodies confers resistance to apoptosis in islets of Langerhans. Diabetes. 2006; 55: 1–6.

75. Ris F, Hammar E, Bosco D, Pilloud C, Maedler K, Donath MY et al. Impact of integrin- matrix matching and inhibition of apoptosis on the survival of purifi ed human beta-cells in vitro. Diabetologia. 2002; 45: 841–850.

76. Hammar G, Parnaud D, Bosco E. Extracellular Matrix Protects Pancreatic beta-Cells Against Apoptosis. Diabetes. 2004; 53: 2034–2041.

77. Deijnen JH, Snylichem Van M, Wolters Van PTR, Schilfgaarde Van GHR. Cell & Tissue Distribution of collagens type I, type III and type V in the pancreas of rat, dog, pig and man. Cell Tissue Res. 1994; 277: 115–121.

78. Hughes SJ, Clark A, McShane P, Contractor HH, Gray DW, Johnson PR. Characterisation of collagen VI within the islet-exocrine interface of the human pancreas: implications for clinical islet isolation? Transplantation. 2006; 8: 1. 423–426.

79. Cirulli V, Beattie GM, Klier G. Expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrinsin the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells. J. Cell Biol. 2000; 150: 1445–1460.

80. Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1 beta1. J. Bio. Chem. 2004; 279: 53762–53769.

81. Yalili RB, Moeen-Rezakhanlou A, Hosseni-Tabatabaei A, Ao Z, Warnock GL. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islet required for diabetes reversal. J. Cell Physiol. 2011; 226 (7): 1813–1819.

82. Riopel M, Trinder M, Wang R. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering. Tissue Eng. Part B Rev. 2014, Jul. 24 (Epub ahead of print).

83. Kuehn C, Lakey JR, Lamb MW, Vermette P. Young porcine endocrine pancreatic islets cultured in fi brin show improved resistance toward hydrogen peroxide. Islets. 2013 Sep–Dec; 5 (5): 207–215. doi: 10.4161/isl.26989. Epub 2013 Nov.

84. Севастьянов ВИ, Перова НВ, Немец ЕА и др. Примеры экспериментально- клинического применения биосовместимых материалов в регенеративной медицине. Биосовместимые материалы: учебное пособие. Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011: 237–252. Sevastianov VI, Perova NV, Nemets EA i dr. Primery experimentalno-klinicheskogo primeneniya biosovmestimykh materialov v regenerativnoy meditsine. Biosovmestimiye materialy: uchebnoye posobiye. Pod red. V.I. Sevastianova, M.P. Kirpichnikova. М.: МIА, 2011: 237– 252.

85. Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Engineering. 2014; Part A. 20: 895–898.

86. Севастьянов ВИ, Перова НВ. Инъекционный гетерогенный биополимерный гидрогель для заместительной и регенеративной хирургии и способ его получения. Патент РФ № 2433828 (2010). Sevastianov VI, Perova NV. Inyektsionniy geterogenniy biopolimerniy gidrogel dla zamestitelnoy i regenerativnoy khirurgii i sposob yego polucheniya. Patent RF 2433828 (2010).

87. Перова НВ, Севастьянов ВИ. Биополимерный гетерогенный гидрогель Сферо®ГЕЛЬ – инъекционный биодеградируемый имплантат. Практическая медицина. 2014; 8 (84): 111–116. Perova NV, Sevastianov VI. Sfero®GEL – inyektsionniy biodegradiruyemiy implantat. Prakticheskaya meditsina. 2014; 8 (84): 111–116.

88. Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song Y. Adhesive growth of pancreatic islet cells on a polyglycolic acid fi brous scaffold. Transplant. Proc. 2008; 40: 1658–1663.

89. Daoud J, Asami K, Rosenberg L, Tabrizian M. Longterm in vitro human pancreatic islet culture using three dimensional microfabricated scaffolds. Biomaterials. 2011; 32, 1536–1542.

90. Marchioli G, van Gurp L, van Krieken PP. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015 May 28; 7 (2): 025009. doi: 10.1088/1758-5090/7/2/025009.

91. Kaufman-Francis K, Koffl er J, Weinberg N, Dor Y, Levenberg S. Engineered vascularbeds provide key signals to pancreatic hormone-producing cells. PLoS One. 2012; 7: 740–741.

92. O’Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE et al. Multicenter Australian Trial of Islet Transplantation: Improving Accessibility and Outcomes. Am. J. Transplant. 2013; 13: 1850–1858.


Для цитирования:


Скалецкая Г.Н., Скалецкий Н.Н., Севастьянов В.И. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ТКАНЕИНЖЕНЕРНЫХ КОНСТРУКЦИЙ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ В ЛЕЧЕНИИ САХАРНОГО ДИАБЕТА 1-го ТИПА. Вестник трансплантологии и искусственных органов. 2016;18(4):133-145. https://doi.org/10.15825/1995-1191-2016-4-133-145

For citation:


Skaletskaya G.N., Skaletskiy N.N., Sevastianov V.I. PROSPECTS OF APPLICATION OF TISSUE-ENGINEERED PANCREATIC CONSTRUCTS IN THE TREATMENT OF TYPE 1 DIABETES. Russian Journal of Transplantology and Artificial Organs. 2016;18(4):133-145. (In Russ.) https://doi.org/10.15825/1995-1191-2016-4-133-145

Просмотров: 378


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)