INFLUENCE OF BONE MARROW MSCs ON THE DEVELOPMENT OF POSTTRANSPLANT CHANGES IN KIDNES
https://doi.org/10.15825/1995-1191-2016-1-45-52
Abstract
Aim: to study of infl uence of various doses of autologous BM MSCs on the development of chronic transplant nephropathy in a decentralized kidney using kidney autotransplantation model (KAT).
Materials and methods. Five groups of experiments were performed on 105 Wistar rats. The model of kidney autotransplantation by means of surgical decentralization (denervation – delymphatization) and infl ammation induction with kidney antigen and Freund’s adjuvant was created in groups I, II and III. Group I served as a decentralization control (control 1). In groups II and III autologous BM MSCs were injected intravenously once 35–40 days after surgery – a high dose in group II: 3.0–5.0×106 cells; a low dose in group III: 0.3–0.5×106 cells; group IV served as intact control; group V served as intact control with the injection of the same dose of BM MSCs as in group II. Kidney excretory functions (diuresis, creatinine, urea, protein in blood and urine, sodium excretion) and morphology were examined during months 3, 5 and 7–10.
Results. In all five groups over the study duration nitrogen excretion was not disrupted. High doses of BM MSCs after KAT modeling resulted after month 3 in pronounced proteinuria in all rats (3–3.5 times more than in group I) and gradually decreased diuresis; histologically severe focal cell infiltration and the accumulation of protein masses in lumina of glomeruli and tubules were observed. By month 10 glomerular and tubulointerstitial focal sclerosis was developed. Low doses of BM MSCs after KAT modeling led to gradual decrease of proteinuria after month 3 reaching the initial values by months 5 and 7 of observation; histologically rare foci of cellular infiltration around glomeruli were observed.
Conclusion. A single application of low doses of BM MSCs is capable of protective desensitizing infl uence on the tissue of decentralized kidney and can prolong the duration of kidney function without signs of pronounced damage, while under the same conditions high doses of autologous BM MSCs lead to accelerated development of severe chronic transplant nephropathy.
About the Authors
N. A. OnishchenkoRussian Federation
S. S. Meshcherin
Russian Federation
1, Shchukinskaya str., Moscow, 123182
I. M. Ilyinsky
Russian Federation
V. I. Sevastianov
Russian Federation
References
1. Sayegh MH, Carpenter CB. Transplantation 50 years later – progress, challenges and promises. 2004. The New England Journal of Medicine., 2004, 26; 351: 2761–2766. Phillip Scott, 2005.
2. Hariharan S, Adams MB, Brennan DS. et al. Recurrent and de novo glomerular disease after renal transplantation. Transplantation. 1999; 68 (5): 635–641.
3. Кирпатовский ИД, Быкова НА. Пересадка почки (экспериментальные и биологические основы). М.: Медицина, 1969. Kirpatovskij ID, Bykova NA. Kidney transplantation (experimental and biological bases). М.: Medicine, 1969.
4. Шумаков ВИ, Онищенко НА. Физиология изолированных и частично изолированных органов. Очерки по физиологическим проблемам трансплантологии и применения искусственных органов. Под ред. ВИ. Шумакова. Тула: Репроникс ЛТД, 1998; 119–151. Shumakov VI, Onischenko NA. Physiology of the isolated and particulate isolated organs. Essays on physiological problems of transplantology and application of artificial organs, editing of VI. Shumakov. Tula: Repronics LTD, 1998. 119–151.
5. Волкова ОВ. Нейродистрофический процесс (морфологические процессы). М.: Медицина, 1978; 256. Volkova OV. Neurodystrophical process (morphological processes). M.: Medicine, 1978; 256.
6. Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cell to promote solid organ transplantation tolerance. Curr. Opin. Organ Transplant. 2013; 18 (1): 51–58.
7. Perico N, Casiraghi F, Gotti E. et al. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl. Int. 2013: 26 (9): 867–878.
8. Franquesa M, Hooduijn MI, Baan CC. The impact of mesenchymal stem cell therapy in transplant rejection and tolerance. Curr. Opin. Organ Transplant. 2012; 17 (4): 355–361.
9. Franquesa M, Herrero E, Torras J. et al. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem cells Dev. 2012; 21 (17): 3125–3135.
10. Кирпатовский ВИ, Казаченко АВ, Надточин ОН. Перспективы использования стволовых клеток в лечении острой и хронической почечной недостаточности. Урология. 2007; 6: 27–32. Kirpatovsky VI, Kazachenko AV., Nadtochin ON. Prospects of stem cells using at treatment of acute and chronic renal insufficiency. Urology. 2007; 6: 27–32.
11. Rinders MEJ, Fibbe WE, Rabelink TJ. Multpotent mesenchymal stromal cell therapy in renal disease and kidney tranaplantation. Nephrol. Dial. Transplant. 2010; 25: 17–24.
12. Caplan AI. Mesenchymal stem cells. J. Orthop. Res. 1999; 9: 641–650.
13. Митциев АК. Изменение активности перекисного окисления липидов как механизм развития патологии почек при действии тяжелых металлов. Патологическая физиология и экспериментальная терапия. 2015; 2: 72–76. Mitsiev AK. The changing of lipid peroxide oxidation activity as a mechanism of kidney pathology progress at the action of heavy metals. Pathological physiology and experimental therapy. 2015; 2: 72–76.
Review
For citations:
Onishchenko N.A., Meshcherin S.S., Ilyinsky I.M., Sevastianov V.I. INFLUENCE OF BONE MARROW MSCs ON THE DEVELOPMENT OF POSTTRANSPLANT CHANGES IN KIDNES. Russian Journal of Transplantology and Artificial Organs. 2016;18(1):45-52. (In Russ.) https://doi.org/10.15825/1995-1191-2016-1-45-52