Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

CREATING A PROLONGED FORM OF ACETYLSALICYLIC ACID: AN EXPERIMENTAL APPROACH

https://doi.org/10.15825/1995-1191-2016-1-22-31

Abstract

Aim. The development of a prolonged form of acetylsalicylic acid (ASA) encapsulated into polymeric highly porous microcarriers using supercritical carbon dioxide and the subsequent study of ASA release kinetics in vitro and in vivo using high-performance liquid chromatographic (HPLC).

Materials and methods. As polymeric carriers for ASA encapsulation amorphous D,L-polylactides (PLA) and polylactoglycolides (PLGA) of PURASORB PDL02 and PDLG7502 series (PURAC Biochem BV, Netherlands) were selected. The ASA encapsulation was performed using the PGSS (Particles from Gas Saturated Solutions) method of supercritical fl uid formation of microfi ne (20–50 μm) bioresorbable powders of aliphatic polyethers containing 10 wt.% ASA. The release kinetics of ASA from polymeric microparticles into saline solution as well as pharmacokinetic studies in vivo (rabbits) were registered by HPLC.

Results. A method of quantitative determination of ASA and its main metabolite salicylic acid (SA) in model solution and blood plasma by HPLC-UV detection with enhanced sample preparation and selectivity was developed. The method’s analytical range without accounting for dilution was 0.05–5.0 μg/ml for model solution and 0.2–10.0 μg/ml for blood plasma; the degree of extraction of ASA SA from blood plasma – 95.8 and 98.1%, respectively. It was demonstrated that the amount of ASA released from PLA during the fi rst 4 h exceeds the mass of ASA released from PLGA by approximately 25% which may serve as a justifi cation for the selection of PLGA as a carrier for the creation of a prolonged form of ASA. Pharmacokinetic studies (rabbits, n = 3) demonstrated a gradual release of ASA from PLGA microparticles during 24 h after intramuscular implantation of encapsulated form of ASA at the dose of 10 mg/kg.

Conclusion. Test samples of highly porous microfi ne powders of PLGA obtained by PGSS containing up to 10 wt.% ASA may serve as source prototypes for the development and creation on their basis of a prolonged form of ASA.

About the Authors

V. I. Sevastianov
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
Russian Federation
1, Schukinskaya str., Moscow, 123182


V. K. Popov
Institute of Laser and Information Technologies of the Russian Academy of Sciences
Russian Federation
Moscow


V. Yu. Belov
Institute of Biomedical Research and Technology (ANO)
Russian Federation
Moscow


S. V. Kursakov
Institute of Biomedical Research and Technology (ANO)
Russian Federation
Moscow


E. N. Antonov
Institute of Laser and Information Technologies of the Russian Academy of Sciences
Russian Federation
Moscow


S. E. Bogorodsky
Institute of Laser and Information Technologies of the Russian Academy of Sciences
Russian Federation
Moscow


References

1. Машковский МД. Лекарственные средства. М.: Медицина, 2012. Mashkovskiy MD. Lekarstvennye sredstva. M.: Medizina, 2012.

2. Скворцова ВИ, Чазова ИЕ, Стаховская ЛВ. Вторичная профилактика инсульта. М.: Медицина, 2006; 120. Skvortsova VI, Chasova IE, Stakhovskaya LV. Vtorichnaya prophilaktika insulta. M.: Medizina, 2006; 120.

3. Бокарев ИН, Щепотин ВМ, Ена ЯМ. Внутрисосудистое свертывание крови. Киев: Здоровье, 1989; 240. Bokarev IN, Schepotin VM, Ena YaM. Vnutrisosudistoye svertyvanie krovi. Kiev: Zdorovie, 1989; 240.

4. Панченко ЕП. Роль антитромботической терапии в профилактике ишемического инсульта. Русский медицинский журнал. 2002; 10: 33–37. Panchehko EP. Rol’ antitromboticheskoy terapii v prophilaktike ishemicheskogo insulta. Russkij meditsinskij zhurnal. 2002; 10: 33–37.

5. Алехин ЕК. Аспирин: новая жизнь старого лекарства. Соровский образовательный журнал. 1999; 10: 3–5. Alekhin EK. Aspirin: novaya zhizn starogo lekarstva. Sorovskij obrasovatelnyj zhurnal. 1999; 10: 3–5.

6. Метелица ВИ. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. СПб.: Бином, 2002; 926. Metelitsa VI. Spravochnik po klinicheskoj pharmakologii lekarstvennykh sredstv. St-P.: Binom, 2002; 926.

7. Li X, Justi BR. Design of Controlled Release Drug Delivery Systems. New York: McGraw-Hill, 2006; 437.

8. Тихобаева АА, Саломатина ЛА, Севастьянов ВИ. Имплантируемая система доставки аспирина на основе бактериального биодеградируемого полимера поли-β-оксибутирата. Вестник трансплантологии и искусственных органов. 2001; III (1): 42–44. Tichobaeva AA, Salomatina LA, Sevastianov VI. et. al. Implantable system of aspirin delivery on the base of bacterial biodegradable polymer of poly-β-hydroxybutyrate. Vestnik transplantologii i iskusstvennykh organov = Russian journal of transplantology and artifi cial organs. 2001; 1: 42–44. [English abstract].

9. Полухина ОС, Басок ЮБ, Саломатина ЛА, Севастьянов ВИ. Экспериментальное исследование фармакокинетики ацетилсалициловой кислоты при трансдермальном способе введения. Экспериментальная и клиническая фармакология. 2009; 3: 29–32. Po lu khi na OS, Basok YuB, Salomatina LA, Se vast’yanov VI. Experimental study of the pharmacokinetics of acetylsalicylic acid upon transdermal administration. Eksperimental’naya I klinicheskaya farmakologiya. 2009; 3: 29–32.

10. Биосовместимые материалы. Под ред. Севастьянова ВИ. и Кирпичникова МП. М.: МИА, 2011; 544. Biocompatible materials (textbook). Ed. by: Sevastianov VI, Kirpichnikov MP. Moscow: MIA, 2011; 544.

11. Pasquali I, Bettini R. Are pharmaceutics really going supercritical? Int. J. Pharm. 2008; 364: 176–187.

12. Гумеров ФМ, Сабирзянов АН, Гумерова ГИ. Суб- и сверхкритические флюиды в процессах переработки полимеров. Казань: Фэн, 2000; 320. Gumerov FM, Sabirzayanov AN, Gumerova GI. Sub- i sverkhkriticheskie flyudy v protsesakh pererabotki polimerov. Kazan’: Fen, 2000; 320.

13. Tai H, Popov VK, Shakesheff KM, Howdle SM. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Biochemical Society Transactions. 2007; 35: 516–521.

14. Воложин АИ, Караков АГ, Суханов ЮП, Шехтер АБ, Попов ВК, Антонов ЕН, Карротт M. Тканевая реакция на акриловые пластмассы, модифицированные сверхкритической экстракцией двуокисью углерода. Стоматология. 1998; 77 (4): 4–8. Volozhin AI, Karakov AG, Sykhanov YuP, Shekhter AB, Popov VK, Antonov EN, Karrot M. Tkanevaya reaktsiya na akrilovye plastmassy, modifi tsironannye sverkhkriticheskoj estraktsiej dvuokisi ugleroda. Stomatologiya. 1998; 77 (4): 4–8.

15. Xu X, Koetzner L, Boulet J. et al. Rapid and sensitive determination of acetylsalicylic acid and salicylic acid in plasma using liquid chromatography-tandem mass spectrometry: application to pharmacokinetic study. Biomed. Chromatogr. 2009; 23 (9): 973–979.

16. Liu JH, Smith PC. Direct analysis of salicylic acid, salicylacyl glucuronide, salicyluric acid and gentisic acid in human plasma and urine by high-performance liquid chromatography. J. Chromatogr. B. Biomed. Appl. 1996; 675 (1): 61–70.

17. Kees F, Jehnich D, Grobecker H. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by high-performance liquid chromatography. J. Chromatogr. B. Biomed. Appl. 1996; 677 (1): 172–177.

18. Gaspari F, Locatelli M. Determination of aspirin and salicylic acid in uremic patients' plasma using reversedphase high-performance liquid chromatography. Ther. Drug. Monit. 1987; 9 (2): 243–247.

19. Mays DC, Sharp DE, Beach CA et al. Improved method for the determination of aspirin and its metabolites in biological fl uids by high-performance liquid chromatography: applications to human and animal studies. J. Chromatogr. 1984; 311 (2): 301–309.

20. McMahon GP, Kelly MT. Determination of aspirin and salicylic acid in human plasma by column-switching liquid chromatography using on-line solid-phase extraction. Anal. Chem. 1998; 70 (2): 409–414.

21. Kolotova ES, Egorova SG, Ramonova AA, Bogorodskij SE, Popov VK, Agapov II, Kirpichnikov MP. Cytotoxic and immunochemical properties of viscumin encapsulated in polylactide microparticles. Acta Naturae. 2012; 4 (1): 105–110.

22. Bogorodskij SE, Krotova LI, Kursakov SV, Minaeva SA, Popov VK, Sevast’yanov VI. Supercritical fl uid encapsulation of acizol into aliphatic polyether microparticles. Russian Journal of Physical Chemistry B. 2015; 9 (7): 1011–1017.

23. Антонов ЕН, Богородский СЭ, Фельдман БМ, Марквичева ЕА, Румш ЛД, Попов ВК. Получение биодеградируемых микрочастиц с биоактивными компонентами с помощью cверхкритического диоксида углерода. Сверхкритические флюиды: теория и практика. 2008; 3: 34–42. Antonov EN, Bogorod skij SE, Feldman BM, Markvicheva EA, Rumsh LD, Popov VK. Obtaining biodegradable microparticles with bioactive components by using supercritical carbon dioxide. Sverkhkriticheskie flyuidy: teoriya i praktika. 2008; 3: 34–42.


Review

For citations:


Sevastianov V.I., Popov V.K., Belov V.Yu., Kursakov S.V., Antonov E.N., Bogorodsky S.E. CREATING A PROLONGED FORM OF ACETYLSALICYLIC ACID: AN EXPERIMENTAL APPROACH. Russian Journal of Transplantology and Artificial Organs. 2016;18(1):22-31. (In Russ.) https://doi.org/10.15825/1995-1191-2016-1-22-31

Views: 1489


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)