Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

ТЕРАПЕВТИЧЕСКИЙ АНГИОГЕНЕЗ С ИСПОЛЬЗОВАНИЕМ ФАКТОРОВ РОСТА И КЛЕТОК КОСТНОГО МОЗГА: БИОЛОГИЧЕСКИЕ ОСНОВЫ И ПЕРСПЕКТИВЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ

https://doi.org/10.15825/1995-1191-2015-3-89-111

Полный текст:

Аннотация

Ангиогенез – формирование новых капилляров путем миграции и пролиферации дифференцированных эндотелиальных клеток из уже существующей сети капилляров и посткапиллярных венул. Большое разнообразие ангиогенных молекул и клеточных популяций вовлечены в многоступенчатые процессы развития и роста сосудов микроциркуляторного русла, ведущих к организации сложной трехмерной сосудистой сети. Основной целью терапевтического ангиогенеза является стимуляция естественных процессов образования и дальнейшего роста сосудов, обеспечивающих реваскуляризацию тканей и органов, поврежденных ишемией. Внимание исследователей привлекают факторы роста и костный мозг как источник стволовых клеток и клеток – предшественников эндотелиоцитов (эндотелиальных прогениторных клеток) в связи с возможностью их применения в терапевтическом ангиогенезе для лечения ишемических повреждений.

Об авторах

Д. В. Булгин
Поликлиника МЕ-ДЕНТ, Ровинь, Хорватия
Хорватия

52210, Ровинь, ул. Истарска, д. 18. Тел. +385 52 842 500; факс +385 52 842 501



О. В. Андреева
ОГБУЗ «Смоленский областной институт патологии», Смоленск, Российская Федерация
Россия


Список литературы

1. Куприянов ВВ, Козлов ВИ. Организация микроциркуляторного сосудистого русла и некоторые вопросы гемодинамики. Вестник Академии медицинских наук СССР. 1971; 26 (11): 58–67. Kupriianov VV, Kozlov VI. Organization of the microcirculatory vascular bed and some questions of hemodynamics. Vestnik Akademii meditsinskikh nauk SSSR. 1971; 26 (11): 58–67. PMID: 5124699. [Article in Russian, No abstract available].

2. Гурина ОЮ, Куприянов ВВ, Миронов АА, Миронов ВА. Механизмы неоваскулогенеза и его регуляция во взрослом организме. Архив анатомии, гистологии и эмбриологии. 1985; 88 (1): 9–24. Gurina OU, Kupriianov VV, Mironov AA, Mironov VA. Mechanisms of neovasculogenesis and its regulation in the adult organism. Arkhiv anatomii, gistologii i embriologii.1985; 88 (1): 9–24. PMID: 2579623. [Article in Russian, English abstract].

3. Ярыгин НЕ, Кораблев АВ. Эмбриональный морфогенез внутриорганного кровеносного русла, путей лимфооттока и структур иннервации. Архив патологии. 1997; 59 (6): 9–14. Iarygin NE, Korablev AV. Embryonal morphogenesis of the intraorgan circulatory bed, lymphatic outfl ow pathways and innervation structures. Arkhiv patologii. 1997; 59 (6): 9–14. PMID:9483211. [Article in Russian, English abstract].

4. Парфенова ЕВ, Ткачук ВА. Терапевтический ангиогенез: достижения, проблемы, перспективы. Кардиологический вестник. 2007; 2 (2): 5–15. Parfenova EV, Tkachuk VA. Therapeutic angiogenesis: advances, problems, prospects. Kardiologicheskiy vestnik. 2007; 2 (2): 5–15. [English abstract].

5. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285 (21): 1182–1186. DOI:10.1056/NEJM197111182852108. PMID: 4938153.

6. Саркисов ДС. Внутриклеточная регенерация и структурно-функциональный анализ биологических процессов в норме и патологии. Архив анатомии, гистологии и эмбриологии. 1978; 74 (6): 15–26. Sarkisov DS. Intracellular regeneration and structurofunctional analysis of biological processes in normal cases and in pathology. Arkhiv anatomii, gistologii i embriologii. 1978; 74 (6): 15–26. PMID: 678133. [Article in Russian, English abstract].

7. Чернух AM, Кауфман ОЯ. Некоторые особенности патогенеза воспаления и заживления ран. Вестник Академии медицинских наук СССР. 1979; 3: 17–20. Chernukh AM, Kaufman OYa. Pathogenesis of wound infl ammation and healing. Vestnik Akademii meditsinskikh nauk SSSR. 1979; 3: 17–20. PMID: 442790. [Article in Russian, No abstract available].

8. Саркисов ДС, Колокольчикова ЕГ, Каем РИ, Пальцин АА. О некоторых механизмах редукции сосудистой системы грануляционной ткани в процессе ее созревания. Архив патологии. 1989; 51 (1): 9–14. Sarkisov DS, Kolokol'chikova EG, Kaem RI, Pal'tsin AA. Various mechanisms of reducing the vascular system of granulation tissue in the process of its maturation. Arkhiv patologii. 1989; 51 (1): 9–14. PMID: 2719567. [Article in Russian, English abstract].

9. Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med (Berl).1995; 73 (7): 333–346. DOI: 10.1007/BF00192885. PMID: 8520966.

10. Шевченко ЮЛ, Матвеев СА, Соловьев ИА. Роль ангиогенеза в норме и патологии. Вестник Российской военно-медицинской академии. 2001; 5 (1): 92–97. Shevchenko YuL, Matveev SA, Solov'ev IA. Rol' angiogeneza v norme i patologii. Vestnik Rossiyskoy voenno-meditsinskoy akademii. 2001; 5 (1): 92–97.

11. Коненков ВИ, Климонтов ВВ, Кузнецова ИВ. Нарушения ангиогенеза и лимфангиогенеза при сахарном диабете. Архив патологии. 2014; 76 (2): 55–59. Konenkov VI, Klimontov VV, Kuznetsova IV. Impaired angiogenesis and lymphangiogenesis in diabetes mellitus. Arkhiv patologii. 2014; 76 (2): 55–59. PMID: 25051729. [Article in Russian, English abstract].

12. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995; 11: 73–91. DOI: 10.1146/annurev.cb.11.110195.000445. PMID: 8689573.

13. Choi K. Hemangioblast development and regulation. Biochem Cell Biol. 1998; 76 (6): 947–956. DOI: 10.1139/o99-007. PMID: 10392708.

14. Павлов КА, Щеголев АИ, Дан ВН, Сапелкин СВ, Мишнев ОД. Медиаторные взаимодействия при васкулогенезе и ангиогенезе. Ангиология и сосудистая хирургия. 2009; 15 (2): 31–35. Pavlov KA, Shchegolev AI, Dan VN, Sapelkin SV, Mishnev OD. Mediatornye vzaimodeystviya pri vaskulogeneze i angiogeneze. Angiologiya i sosudistaya khirurgiya. 2009; 15 (2):31–35.

15. Watt SM, Athanassopoulos A, Harris AL, Tsaknakis G. Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J R Soc Interface. 2010; 7 6): 731–751. DOI: 10.1098/rsif.2010.0377.focus.PMID: 20843839.

16. Макаревич ПИ, Шевелев АЯ, Рыбалкин ИН, Каширина НМ, Липатова ЛН, Цоколаева ЗИ и др. Новые плазмидные конструкции, предназначенные для терапевтического ангиогенеза и несущие гены ангиогенных факторов роста – VEGF, HGF и ангиопоэтина-1. Клеточная трансплантология и тканевая инженерия. 2010; 5 (1): 47–52. Makarevich PI, Shevelev AYa, Rybalkin IN, Kashirina NM, Lipatova LN, Tsokolaeva ZI et al. Novel plasmid constructs with angiogenic growth factors genes human VEGF, HGF and angiopoietin-1 for therapeutic angiogenesis. Cellular Transplantology and Tissue Engineering. 2010; V (1): 47–52. [English abstract].

17. Carmeliet P, Collen D. Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol. 2000; 190 (3): 387–405. DOI: 10.1002/(SICI)1096- 9896(200002)190:3<387::AID-PATH595>3.0.CO;2-R. PMID: 10685072.

18. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010; 60 (4): 222–243. DOI: 10.3322/caac.20075. PMID: 20554717.

19. Коненков ВИ, Климентов ВВ. Генные и клеточные технологии в лечении синдрома диабетической стопы. Сахарный диабет. 2014; 1: 63–69. Konenkov VI, Klimontov VV. Gene and cell-based technologies for the treatment of diabetic foot syndrome. Diabetes Mellitus. 2014; 1: 63–69. DOI: 10.14341/DM2014163-69. [English abstract].

20. Парфенова ЕВ, Ткачук ВА. Перспективы генной терапии сердечно-сосудистых заболеваний. Вопросы медицинской химии. 2000; 46 (3): 293–310. Parfenova EV, Tkachuk VA. Perspektivyi gennoy terapii serdechno-sosudistyih zabolevaniy. Voprosy meditsinskoy khimiii. 2000; 46 (3): 293–310. PMID: 11033888. [Article in Russian, English abstract].

21. Alessandri G, Girelli M, Taccagni G, Colombo A, Nicosia R, Caruso A. et al. Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Lab Invest. 2001; 81 (6): 875–885. PMID: 11406648

22. Дыбан АП. Стволовые клетки в экспериментальной и клинической медицине. Медицинский академический журнал. 2002; 3 (2): 3–24. Dyban AP. Stvolovye kletki v eksperimental'noy i klinicheskoy meditsine. Meditsinskiy akademicheskiy zhurnal. 2002; 3 (2): 3–24.

23. Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS et al. Blood vessels engineered from human cells. Lancet. 2005; 365 (9477): 2122–2124. PMID: 15964449.

24. Покровский АВ, Сапелкин СВ. Роль новых медицинских технологий в ангиологии и сосудистой хирургии. Ангиология и сосудистая хирургия. 2008; 14 (1): 9–12. Pokrovskiy AV, Sapelkin SV. Rol' novykh meditsinskikh tekhnologiy v angiologii i sosudistoy khirurgii. Angiologiya i sosudistaya khirurgiya. 2008; 14 (1): 9–12.

25. Еремеева МВ. Возможности применения стволовых клеток и клеток-предшественников для стимуляции реваскуляризации и регенерации органов. Вестник трансплантологии и искусственных органов. 2010; XII (1): 86–93. Eremeeva MV. Application of stem cells and precursor cells for stimulation of organ evascularization and regeneration. Vestnik transplantologii i iskusstvennykh organov=Russian Journal of Transplantology and artifi cial organs. 2010; XII (1): 86–93. DOI: 10.15825/1995-1191-2010-1-86-93. [English abstract].

26. Кузнецов МР, Черников ВП, Тепляков СА, Сизарев АВ, Тугдумов БВ, Габиева МГ, Джалилова НС. Клинико-морфологические параллели различных степеней хронической артериальной недостаточности нижних конечностей. Ангиология и сосудистая хирургия. 2010; 16 (3): 152–157. Kuznetsov MR, Chernikov VP, Teplyakov SA, Sizarev AV, Tugdumov BV, Gabieva MG, Dzhalilova NS. Kliniko-morfologicheskie paralleli razlichnykh stepeney khronicheskoy arterial'noy nedostatochnosti nizhnikh konechnostey. Angiologiya i sosudistaya khirurgiya. 2010; 16 (3): 152–157.

27. Botti C, Maione C, Coppola A, Sica V, Cobellis G. Autologous bone marrow cell therapy for peripheral arterial disease. Stem Cells Cloning. 2012; 5: 5–14. DOI: 10.2147/SCCAA.S28121. PMID: 24198534

28. Репин BC. Трансплантация клеток: новые реальности в медицине. Бюллетень экспериментальной биологии и медицины. 1998; 126 (1): 14–28. Repin VS. Transplantatsiya kletok: novye real'nosti v meditsine. Byulleten' eksperimental'noy biologii i meditsiny. 1998;126 (1): 14–28.

29. Nemeno-Guanzon JG, Lee S, Berg JR, Jo YH, Yeo JE, Nam BM et al. Trends in Tissue Engineering for Blood Vessels. J Biomed Biotechnol. 2012; 2012: 956345. DOI: 10.1155/2012/956345. PMID: 23251085.

30. Повещенко ОВ, Повещенко АФ, Коненков ВИ. Физиологические и цитологические основы клеточной регуляции ангиогенеза. Успехи физиологических наук. 2012; 43 (3): 48–61. Poveshchenko OV, Poveshchenko AF, Konenkov VI. Physiological and cytological bases of cellular regulation of angiogenesis. Uspekhi fi ziologicheskikh nauk. 2012; 43 (3): 48–61. PMID: 23101379. [Article in Russian, English abstract].

31. Давыденко ВВ, Мачс ВМ. Стимулированный ангиогенез – новое направление в лечении при ишемических состояниях. Вестник хирургии имени И.И. Грекова. 2000; 159 (1): 117–120. Davydenko VV, Machs VM. Stimulated angiogenesis: a new trend in the treatment of ischemic conditions. Vestnik khirurgii imeni I.I. Grekova. 2000; 159 (1): 117–120. PMID: 10890120. [Article in Russian, No abstract available].

32. Константинов БА, Гавриленко AB, Воронов ДА, Шереметьева ГФ. Перспективы использования генной инженерии в лечении критических ишемических состояний. Анналы Российского научного центра хирургии Российской академии медицинских наук. 2004; 13: 71–73. Konstantinov BA, Gavrilenko AB, Voronov DA, Sheremet'eva GF. Perspektivy ispol'zovaniya gennoy inzhenerii v lechenii kriticheskikh ishemicheskikh sostoyaniy. Annaly Rossiyskogo nauchnogo tsentra khirurgii Rossiyskoy akademii meditsinskikh nauk. 2004; 13: 71–73.

33. Бокерия ЛА, Спиридонов AA, Еремеева MB, Аракелян BC, Демидова ОА. Первый опыт комбинированного лечения хронической ишемии нижних конечностей с использованием стимуляторов неоангиогенеза. Бюллетень НЦССХ им. А.Н. Бакулева РАМН «Сердечно-сосудистые заболевания: ангиология и сосудистая хирургия». 2006; 7 (4): 73–80. Bokeriya LA, Spiridonov AA, Eremeeva MB, Arakelyan BC, Demidova OA. Pervyy opyt kombinirovannogo lecheniya khronicheskoy ishemii nizhnikh konechnostey s ispol'zovaniem stimulyatorov neoangiogeneza. Byulleten' NTsSSKh im. A.N. Bakuleva RAMN «Serdechno- sosudistye zabolevaniya: angiologiya i sosudistaya khirurgiya». 2006; 7 (4): 73–80.

34. Brudno Y, Ennett-Shepard AB, Chen RR, Aizenberg M, Mooney DJ. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials. 2013; 34 (36): 9201–9209. DOI: 10.1016/j.biomaterials.2013.08.007. PMID: 23972477.

35. Mangiafi co RA, Mangiafi co M. Medical treatment of critical limb ischemia: current state and future directions. Curr Vasc Pharmacol. 2011; 9 (6): 658–676. DOI: 10.2174/157016111797484107. PMID: 21595626.

36. Shimamura M, Nakagami H, Koriyama H, Morishita R. Gene therapy and cell-based therapies for therapeutic angiogenesis in peripheral artery disease. Biomed Res Int. 2013; 2013: 186215. DOI: 10.1155/2013/186215.PMID: 24294599.

37. Гавриленко АВ, Воронов ДА, Фомичева ИИ. Генно-инженерные технологии стимуляции ангиогенеза в лечении хронической ишемии нижних конечностей. Анналы хирургии. 2005; 4: 5–8. Gavrilenko AV, Voronov DA, Fomicheva II. Genno-inzhenernye tekhnologii stimulyatsii angiogeneza v lechenii khronicheskoy ishemii nizhnikh konechnostey. Annaly khirurgii. 2005; 4: 5–8.

38. Silvestre JS. Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases. Thromb Res. 2012; 130 (1): 90–94. DOI: 10.1016/j.thromres. 2012.08.287. PMID: 23026676.

39. Хорев НГ, Елыкомов ВА, Залозный ДА. Терапевтический клеточный ангиогенез в лечении заболеваний периферических артерий. Ангиология и сосудистая хирургия. 2011; 17 (2): 36–44. Khorev NG, Elykomov VA, Zaloznyy DA. Terapevticheskiy kletochnyy angiogenez v lechenii zabolevaniy perifericheskikh arteriy. Angiologiya i sosudistaya khirurgiya. 2011; 17 (2): 36–44.

40. Бокерия ЛА, Георгиев ГП, Голухова ЕЗ, Еремеева МВ, Ким АИ, Киселев СЛ и др. Клеточные и интерактивные технологии в лечении врожденных и приобретенных пороков сердца и ишемической болезни сердца. Вестник Российской академии медицинских наук. 2004; 9: 48–55. Bokeriya LA, Georgiev GP, Golukhova E3, Eremeeva MV, Kim AI, Kiselev SL et al. Cell and interactive technologies in the treatment of congenital and acquired heart diseases and ischemic heart disease. Vestn Ross Akad Med Nauk. 2004; 9: 48–55. PMID: 15526687. [Article in Russian, No abstract available].

41. Талицкий КА, Булкина ОС, Арефьева ТИ, Воробьева ОН, Левицкий ИВ, Федорович АА и др. Эффективность терапевтического ангиогенеза у больных с хронической ишемией нижних конечностей. Клеточная трансплантология и тканевая инженерия. 2011; VI (3): 89–98. Talitskiy KA, Bulkina OS, Aref'eva TI, Vorob'eva ON, Levitskiy IV, Fedorovich AA et al. Effi cacy of therapeutic angiogenesis in patients with chronic lower limb ischemia. Cellular Transplantology and Tissue Engineering. 2011; VI (3): 89–98. [English abstract].

42. Davies MG. Critical limb ischemia: cell and molecular therapies for limb salvage. Methodist Debakey Cardiovasc J. 2012; 8 (4): 20–27. PMID: 23342184.

43. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specifi c for vascular endothelial cells. Biochem Biophys Res Commun. 1989; 161 (2): 851–858. DOI: 10.1016/0006- 291X(89)92678-8. PMID: 2735925.

44. Plouët J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identifi ed endothelial cell mitogen produced by AtT-20 cells. EMBO J. 1989; 8 (12): 3801–3806. PMID: 2684646.

45. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009; 29 (6): 789–791. DOI: 10.1161/ATVBAHA.108.179663. PMID: 19164810

46. Nieves BJ, D'Amore PA, Bryan BA. The function of vascular endothelial growth factor. Biofactors. 2009; 35 (4): 332–337. DOI:10.1002/biof.46. PMID: 19415738.

47. Салафутдинов ИИ, Шафигуллина АК, Ялвач МЭ, Лагарькова МА, Шутова МВ, Киселев СЛ и др. Эффект одновременной экспрессии различных изоформ фактора роста эндотелия сосудов VEGF и основного фактора роста фибробластов FGF2 на пролиферацию эндотелиальных клеток пупочной вены человека HUVEC. Клеточная трансплантология и тканевая инженерия. 2010; V (2): 62–67. Salafutdinov II, Shafi gullina AK, Yalvac ME, Lagarkova MA, Shutova MV, Kiselev SL et al. Effect of simultaneous expression of various isoforms of vascular endothelial growth factor VEGF and fi broblast growth factor FGF2 on proliferation of human umbilical cord blood cells HUVEC. Cellular Transplantology and Tissue Engineering. 2010; V (2): 62–67. [English abstract].

48. Takeshita S, Pu LQ, Stein LA, Sniderman AD, Bunting S, Ferrara N et al. Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation. 1994; 90 (5 Pt 2): II228–234. PMID: 7525111.

49. Becit N, Ceviz M, Kocak H, Yekeler I, Unlü Y, Celenk C, Akin Y. The effect of vascular endothelial growth factor on angiogenesis: an experimental study. Eur J Vasc Endovasc Surg. 2001; 22 (4): 310–316. DOI: 10.1053/ejvs.2001.1468. PMID: 11563889.

50. Бочков НП, Константинов БА, Гавриленко АВ, Воронов ДА, Авдеева СВ, Хайдарова НВ и др. Генно-инженерные технологии в лечении хронической ишемии нижних конечностей. Вестник Российской академии медицинских наук. 2006; 9: 6–11. Bochkov NP, Konstantinov BA, Gavrilenko AV, Voronov DA, Avdeeva SV, Khaydarova NV et al. The technologies of genetic engineering in treatment of chronic lower limb ischemia. Vestn Ross Akad Med Nauk. 2006; 9–10: 6–11. PMID: 17111917. [Article in Russian, English abstract].

51. Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR et al. Magnetic resonance mapping demonstrates benefi ts of VEGF-induced myocardial angiogenesis. Nat Med. 1995; 1 (10): 1085−1089. DOI: 10.1038/nm1095-1085. PMID: 7489368.

52. Baumgartner I. Therapeutic angiogenesis: theoretic problems using vascular endothelial growth factor. Curr Cardiol Rep. 2000; 2 (1): 24–28. DOI: 10.1007/ s11886-000-0021-6. PMID: 10980868.

53. Birk DM, Barbato J, Mureebe L, Chaer RA. Current insights on the biology and clinical aspects of VEGF regulation. Vasc Endovascular Surg. 2008 Dec – 2009 Jan; 42 (6): 517–530. DOI: 10.1177/1538574408322755. PMID: 18799497.

54. Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther. 1996; 7 (8): 959−988. DOI: 10.1089/hum.1996.7.8-959. PMID: 8727509

55. Бокерия ЛА, Демидова ОА, Аракелян BC, Еремеева МВ. Опыт лечения хронической ишемии нижних конечностей с помощью генного препарата сосудисто-эндотелиального фактора роста VEGF165 –«ангиостимулина». Бюллетень НЦССХ им. А.Н. Бакулева РАМН «Сердечно-сосудистые заболевания: ангиология и сосудистая хирургия». 2006;7 (1): 74–81. Bokeriya LA, Demidova OA, Arakelyan VS, Eremeeva MV. Opyt lecheniya khronicheskoy ishemii nizhnikh konechnostey s pomoshch'yu gennogo preparata sosudisto-endotelial'nogo faktora rosta VEGF165 – «angiostimulina». Byulleten' NTsSSKh im. A.N. Bakuleva RAMN «Serdechno-sosudistye zabolevaniya: angiologiya i sosudistaya khirurgiya». 2006; 7 (1): 74–81.

56. Гавриленко АВ, Воронов ДА, Константинов БА, Бочков НП. Сочетание реконструктивных сосудистых операций с генно-инженерными технологиями стимуляции ангиогенеза: современная стратегия улучшения отдаленных результатов лечения пациентов с хронической ишемией нижних конечностей. Ангиология и сосудистая хирургия. 2008; 14 (4): 49–53. Gavrilenko AV, Voronov DA, onstantinov BA, Bochkov NP. Sochetanie rekonstruktivnykh sosudistykh operatsiy s genno-inzhenernymi tekhnologiyami stimulyatsii angiogeneza: sovremennaya strategiya uluchsheniya otdalennykh rezul'tatov lecheniya patsientov s khronicheskoy ishemiey nizhnikh konechnostey. Angiologiya i sosudistaya khirurgiya. 2008; 14 (4): 49–53.

57. Плотников МВ, Ризванов АА, Масгутов РФ, Мавликеев МО, Салафутдинов ИИ, Газизов ИМ и др. Первый клинический опыт применения прямой генной терапии VEGF и bFGF при лечении пациентов с критической ишемией нижних конечностей. Клеточная трансплантология и тканевая инженерия. 2012; VII (3): 180–184. Plotnikov MV, Rizvanov AA, Masgutov RF, Mavlikeev MO, Salafutdinov II, Gazizov IM et al. The fi rst clinical experience of direct gene therapy using VEGF and bFGF in treatment patients with critical lower limb ischemia. Cellular Transplantology and Tissue Engineering. 2012; VII (3): 180–184. [English abstract].

58. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998; 97 (12): 1114−1123. DOI: 10.1161/01.CIR.97.12.1114. PMID: 9537336.

59. Isner JM, Baumgartner I, Rauh G, Schainfeld R, Blair R, Manor O et al. Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg. 1998; 28 (6): 964−975. DOI: 10.1016/S0741-5214(98)70022-9. PMID: 9845647.

60. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M et al.Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation. 1998; 98 (25): 2800−2804. DOI: 10.1161/01.CIR.98.25.2800. PMID: 9860779.

61. Armelin HA. Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A. 1973; 70 (9): 2702–2706. PMID: 4354860.

62. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocrine Related Cancer. 2000; 7 (3): 165–197. DOI: 10.1677/ erc.0.0070165. PMID: 11021964.

63. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor / fi broblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005; 16 (2): 159–178. DOI: 10.1016/j.cytogfr.2005.01.004. PMID: 15863032.

64. Yu X, White KE. Fibroblast growth factor 23 and its receptors. Ther Apher Dial. 2005; 9 (4): 308–312. DOI: 10.1111/j.1744-9987.2005.00287.x PMID: 16076372.

65. Abraham JA, Whang JL, Tumolo A, Mergia A, Friedman J, Gospodarowicz D, Fiddes JC. Human basic fi -broblast growth factor: nucleotide sequence and genomic organization. EMBO J. 1986; 5 (10): 2523–2528. PMID: 3780670.

66. Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2011; 149 (2): 121–130. DOI: 10.1093/jb/mvq121. PMID: 20940169.

67. Chen GJ, Forough R. Fibroblast growth factors, fi broblast growth factor receptors, diseases, and drugs. Recent Pat Cardiovasc Drug Discov. 2006; 1 (2): 211–224. DOI: 10.2174/157489006777442478 PMID:18221087.

68. Феофанова ЕВ, Данилова ТГ. Клиническое значение основного фактора роста фибробластов крови при ревматоидном артрите. Лечение и профилактика. 2013; 7 (3): 46–52. Feofanova EV, Danilova TG. Klinicheskoe znachenie osnovnogo faktora rosta fi broblastov krovi pri revmatoidnom artrite. Lechenie i profi laktika. 2013; 7 (3): 46–52.

69. Chu H, Wang Y. Therapeutic angiogenesis: controlled delivery of angiogenic factors. Ther Deliv. 2012; 3 (6):693–714. PMID: 22838066.

70. Cordon-Cardo C, Vlodavsky I, Haimovitz-Friedman A, Hicklin D, Fuks Z. Expression of basic fi broblast growth factor in normal human tissues. Lab Invest. 1990; 63 (6): 832–840. PMID: 2255190.

71. Vlodavsky I, Fuks Z, Ishai-Michaeli R, Bashkin P, Levi E, Korner G et al. Extracellular matrix-resident basic fi broblast growth factor: implication for the control of angiogenesis. J Cell Biochem. 1991; 45 (2): 167–176. PMID: 1711529.

72. Slavin J. Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int. 1995; 19 (5): 431–444. PMID: 7543787.

73. Hull MA, Brough JL, Powe DG, Carter GI, Jenkins D, Hawked CJ. Expression of basic fi broblast growth factor in intact and ulcerated human gastric mucosa. Gut. 1998; 43 (4): 525–536. DOI: 10.1136/gut.43.4.525.PMID: 9824581.

74. Gajdusek CM, Luo Z, Mayberg MR. Basic fi broblast growth factor and transforming growth factor beta-1:synergistic mediators of angiogenesis in vitro. J Cell Physiol. 1993; 157 (1): 133–144. PMID: 7691833.

75. McNeil PL, Muthukrishnan L, Warder E, D'Amore PA. Growth factors are released by mechanically wounded endothelial cells. J Cell Biol. 1989; 109 (2): 811–822. PMID: 2760113.

76. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fi broblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenviroment. Am J Pathol. 1996; 149 (1): 59–71. PMID: 8686763.

77. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T et al. Salvage of infarcted myocardium by angiogenic action of basic fi broblast growth factor. Science. 1992; 257 (5075): 1401–1403. DOI: 10.1126/science.1382313. PMID: 1382313.

78. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S et al. Effects of chronic systemic administration of basic fi broblast growth factor on collateral development in the canine heart. Circulation. 1995; 91 (1): 145–153. DOI: 10.1161/01.CIR.91.1.145. PMID: 7805195.

79. Watanabe E, Smith DM, Sun J, Smart FW, Delcarpio JB, Roberts TB et al. Effect of basic fi broblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol. 1998; 93 (1): 30–37. PMID: 9538935.

80. Miyataka M, Ishikawa K, Katori R. Basic fi broblast growth factor increased regional myocardial blood fl ow and limited infarct size of acutely infarcted myocardium in dogs. Angiology. 1998; 49 (5): 381–390. DOI: 10.1177/000331979804900507. PMID: 9591530.

81. Baffour R, Garb JL, Kaufman J, Berman J, Rhee SW, Norris MA, Friedmann P. Angiogenic therapy for the chronically ischemic lower limb in a rabbit model. J Surg Res. 2000; 93 (2): 219–229. DOI: 10.1006/jsre.2000.5980. PMID: 11027464.

82. Sellke FW, Laham RJ, Edelman ER, Pearlman JD, Simons M. Therapeutic angiogenesis with basic fi broblast growth factor: technique and early results. Ann Thorac Surg. 1998; 65 (6): 1540–1544. DOI: 10.1016/S0003- 4975(98)00340-3. PMID: 9647055.

83. Laham RJ, Chronos NA, Pike M, Leimbach ME, Udelson JE, Pearlman JD et al. Intracoronary basic fi broblast growth factor (FGF2) in patients with severe ischemic heart disease: results of a Phase I open-label dose escalation study. J Am Coll Cardiol. 2000; 36 (7):2132–2139. DOI: 10.1016/S0735-1097(00)00988-8. PMID: 11127452.

84. Bush M, Samara E, Whitehouse M, Yoshizawa C, Novicki DL, Pike M et al. Pharmacokinetics and pharmacodynamics of recombinant FGF2 in a phase I trial in coronary artery disease. J Clin Pharmacol. 2001; 41 (4): 378–385. DOI: 10.1177/00912700122010230. PMID:11304894.

85. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H et al. Pharmacological treatment of coronary artery disease with recombinant fi broblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002; 105 (7): 788–793. DOI: 10.1161/hc0802.104407. PMID: 11854116.

86. Aviles RJ, Annex BH, Lederman RJ. Testing clinical therapeutic angiogenesis using basic fi broblast growth factor (FGF2). Brit J Pharmacol. 2003; 140 (4): 637– 646. DOI: 10.1038/sj.bjp.0705493 PMID: 14534147.

87. Lazarous DF, Unger EF, Epstein SE, Stine A, Arevalo JL, Chew EY, Quyyumi AA. Basic fi broblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol. 2000; 36 (4):1239–1244. DOI: 10.1016/S0735-1097(00)00882-2. PMID: 11028477.

88. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008; 16 (5): 972–978. DOI: 10.1038/mt.2008.33.PMID: 18388929.

89. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB et al. Therapeutic angiogenesis with recombinant fi broblast growth factor-2 for ntermittent claudication (the TRAFFICstudy): a randomised trial. Lancet. 2002; 359 (9323):2053–2058. DOI: 10.1016/S0140-6736(02)08937-7. PMID: 12086757.

90. Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol. 2003; 12 (6): 295–310. DOI: 10.1016/S1054- 8807(03)00089-9. PMID: 14630296.

91. Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007; 28 (6): 1123–1131. DOI: 10.1016/j.biomaterials.2006.10.029. PMID: 17113636.

92. Marui A, Tabata Y, Kojima S, Yamamoto M, Tambara K, Nishina T et al. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fi broblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I–IIa study. Circ J. 2007; 71 (8): 1181–1186. DOI: 10.1253/circj.71.1181. PMID: 17652878.

93. Hashimoto T, Koyama H, Miyata T, Hosaka A, Tabata Y, Takato T, Nagawa H. Selective and sustained delivery of basic fi broblast growth factor (bFGF) for treatment of peripheral arterial disease: results of a phase I trial. Eur J Vasc Endovasc Surg. 2009; 38 (1):71–75. DOI: 10.1016/j.ejvs.2009.02.005. PMID: 19328029.

94. Саркисов ДС, Глущенко ЕВ, Гуруков ШР, Морозов СС, Туманов BП, Бережков НВ. Аллотрансплантация культивированных фибробластов на незаживающие раны после аутодермопластики. Бюллетень экспериментальной биологии и медицины. 1991; 111 (5): 542–544. Sarkisov DS, Glushchenko EV, Gurukov ShR, Morozov SS, Tumanov VP, Berezhkov NV. Allotransplantation of cultured fi broblasts on non-healing

95. wounds after autodermatoplas. Biull Eksp Biol Med. 1991; 111 (5): 542–544. PMID: 1878577. [Article in Russian, English abstract].

96. Саркисов ДС, Алексеев AA, Глущенко ЕВ, Морозов СС, Серов ГГ, Туманов ВП, Федоров ВД. Теоретические и практические аспекты использования культивированных фибробластов при восстановлении целостности кожных покровов. Вестник Российской академии медицинских наук. 1994; 6: 6–11. Sarkisov DS, Alekseev AA, Glushchenko EV, Morozov SS, Serov GG, Tumanov VP, Fedorov VD. Theoretical and practical aspects of using cultured fi broblasts for skin reconstruction. Vestn Ross Akad Med Nauk. 1994; (6): 6–11. PMID: 7522707. [Article in Russian, No abstract available].

97. Саркисов ДС, Федоров ВД, Глущенко ЕВ, Алексеев АА, Туманов ВП, Серов ГГ и др. Использование культивированных фибробластов для восстановления кожных покровов у тяжелообожженных. Бюллетень экспериментальной биологии и медицины. 1995; 119 (6): 566–570. Sarkisov DS, Fedorov VD, Glushchenko EV, Alekseev AA, Tumanov VP, Serov GG et al. Use of cultured fi broblasts for restoration of skin in severe burns. Biull Eksp Biol Med. 1995; 119 (6): 566–570. PMID: 8589373. [Article in Russian, No abstract available].

98. Tsuboi R, Rifkin DB. Recombinant basic fi broblast growth factor stimulates wound healing in healing-impaired db/db mice. J Exp Med. 1990; 172 (1): 245–251. DOI: 10.1084/jem.172.1.245. PMID: 2358777.

99. Uchi H, Igarashi A, Urabe K, Koga T, Nakayama J, Kawamori R et al. Clinical effi cacy of basic fi broblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol. 2009; 19 (5): 461–468. DOI: 10.1684/ejd.2009.0750. PMID: 19638336.

100. Morimoto N, Yoshimura K, Niimi M, Ito T, Tada H, Teramukai S et al. An exploratory clinical trial for combination wound therapy with a novel medical matrix and fi broblast growth factor in patients with chronic skin ulcers: a study protocol. Am J Transl Res. 2012; 4 (1): 52–59. PMID: 22347522.

101. Akita S, Akino K, Imaizumi T, Hirano A. A basic fi broblast growth factor improved the quality of skin grafting in burn patients. Burns. 2005; 31 (7): 855–858. DOI: 10.1016/j.burns.2005.04.008. PMID: 16199295.

102. Никитенко ВИ, Павловичев СА, Полякова ВС, Копылов ВА, Гнедой СН, Миханов ВА, Никитенко ИЕ. Использование факторов роста фибробластов для лечения ран и ожогов. Хирургия. Журнал им. Н.И. Пирогова. 2012; 12: 72–76. Nikitenko VI, Pavlovichev SA, Polyakova VS, Kopylov VA, Gnedoy SN, Mikhanov VA, Nikitenko IE. The use of fybropblast growth factor in wound and burn treatment. Journal Surgery named after N.I. Pirogov. 2012; 12: 72–76.

103. Миханов ВА, Полякова ВС, Копылов ВА, Абземелева РА. Особенности приживления аутодермотрансплантатов на негранулирующие глубокие послеожоговые раны кожи под действием препарата «Винфар». Морфологические ведомости. 2013; 2: 55–60. Mikhanov VA, Polyakova VS, Kopylov VA, Abzemeleva RA. Features autodermotransplant engraftment by granulating not deep post-burn wounds of the skin under the infl uence of the drug «VINFAR». Morphological Newsletter. 2013; 2: 55–60. [English abstract].

104. Akita S, Akino K, Imaizumi T, Tanaka K, Anraku K, Yano H, Hirano A. The quality of pediatric burn scars is improved by early administration of basic fi broblast growth factor. J Burn Care Res. 2006; 27 (3): 333–338.DOI: 10.1097/01.BCR.0000216742.23127.7A. PMID: 16679903.

105. Akita S, Akino K, Imaizumi T, Hirano A. Basic fi broblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen. 2008; 16 (5): 635–641. DOI: 10.1111/j.1524-475X.2008.00414.x. PMID: 19128258.

106. Matsumoto S, Tanaka R, Okada K, Arita K, Hyakusoku H, Miyamoto M. et al. The Effect of Control-released Basic Fibroblast Growth Factor in Wound Healing: Histological Analyses and Clinical Application. Plast Reconstr Surg Glob Open. 2013; 1: e44. DOI: 10.1097/GOX.0b013e3182a88787. PMID: 25289238.

107. Bethel A, Kirsch JR, Koehler RC, Finklestein SP, Traystman RJ. Intravenous basic fi broblast growth factor decreases brain injury resulting from focal ischemia in cats. Stroke. 1997; 28 (3): 609–615. DOI: 10.1161/01.STR.28.3.609. PMID: 9056620.

108. Paciaroni M, Bogousslavsky J. Trafermin for stroke recovery: Is it time for anotherrandomized clinical trial? Expert Opin Biol Ther. 2011; 11 (11): 1533–1541. DOI: 10.1517/14712598.2011.616888. PMID: 21883031.

109. Bogousslavsky J, Victor SJ, Salinas EO, Pallay A, Donnan GA, Fieschi C et al. Fiblast (trafermin) in acute stroke: Results of the European-Australian phase II/III safety and effi cacy trial. Cerebrovasc Dis. 2002; 14 (3–4): 239–251. DOI: 10.1159/000065683. PMID: 12403958.

110. Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. Adv Exp Med Biol. 2002; 513: 335–351. PMID: 12575827.

111. Wolf WA, Martin JL, Kartje GL, Farrer RG. Evidence for fi broblast growth factor-2 as a mediator of amphetamine-enhanced motor improvement following stroke. PLoS One. 2014; 9 (9): e108031. DOI: 10.1371/journal.pone.0108031. PMID: 25229819.

112. Wei OY, Huang YL, Da CD, Cheng JS. Alteration of basic fi broblast growth factor expression in rat during cerebral ischemia. Acta Pharmacol Sin. 2000; 21 (4): 296–300. PMID: 11324453.

113. Folkman J, Szabo S, Stovroff M, McNeil P, Li W, Shing Y. Duodenal ulcer. Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann Surg. 1991; 214 (4): 414–425.PMID: 1719945.

114. Hull MA, Cullen DJ, Hudson N, Hawkey CJ. Basic fi -broblast growth factor treatment for non-steroidal antiinfl ammatory drug associated gastric ulceration. Gut. 1995; 37 (5): 610–612. PMID: 8549933.

115. de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978; 75 (8): 4001–4005. PMID: 211512.

116. Valluru M, Staton CA, Reed MW, Brown NJ. Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing. Front Physiol. 2011; 2: 89. DOI: 10.3389/fphys.2011.00089. PMID: 22164144.

117. Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-β (TGF-β). Growth Factors. 1993; 8 (1): 1–9. PMID: 8448037.

118. Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005; 128 (6): 585–590. DOI: 10.1378/chest.128.6_suppl.585S.PMID: 16373850.

119. Сушельницкий С. Трансформирующий фактор роста β и его роль в возникновении и развитии опухолей. Экспериментальная онкология. 2002; 24 (1): 3–12. Souchelnytskyi S. Transforming growth factor-β signaling and its role in cancer. Experimental Oncology. 2002; 24 (1): 3–12. [English abstract].

120. Henrich-Noack P, Prehn JH, Krieglstein J. TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke. 1996; 27 (9): 1609–1614. DOI: 10.1161/01.STR.27.9.1609. PMID: 8784137.

121. Dhandapani KM, Brann DW. Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys. 2003; 39 (1): 13–22. DOI: 10.1385/CBB:39:1:13. PMID: 12835526.

122. Flanders KC, Burmester JK. Medical applications of transforming growth factor-beta. Clin Med Res. 2003; 1 (1): 13–20. DOI: 10.3121/cmr.1.1.13. PMID: 15931280.

123. Lefer AM, Tsao P, Aoki N, Palladino MA Jr. Mediation of cardioprotection by transforming growth factor-beta. Science. 1990; 249 (4964): 61–64. DOI: 10.1126/science.2164258. PMID: 2164258.

124. Hermonat PL, Li D, Yang B, Mehta JL. Mechanism of action and delivery possibilities for TGFbeta1 in the treatment of myocardial ischemia. Cardiovasc Res. 2007; 74 (2): 235–243. DOI: 10.1016/j.cardiores.2007.01.016. PMID: 17331484.

125. Kohler N, Lipton A. Platelets as a source of fi broblast growth-promoting activity. Exp Cell Res. 1974; 87:297–301. PMID: 4370268.

126. Ross R, Glomset J, Kariya B, Harker L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells. Proc Natl Acad Sci USA. 1974; 71 (4): 1207–1210. PMID: 4208546.

127. Westermark B, Wasteson A. A platelet factor stimulating human normal glial cells. Exp Cell Res. 1976; 98 (1): 170–174. DOI: 10.1016/0014-4827(76)90476- 6. PMID: 1253836.

128. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999; 79 (4): 1283–1316. PMID: 10508235.

129. Andrae J, Gallini R, Betsholtz C. Role of plateletderived growth factors in physiology and medicine. Genes Dev. 2008; 22 (10): 1276–1312. DOI:10.1101/gad.1653708. PMID: 18483217.

130. Макаров МС, Сторожева МВ, Конюшко ОИ, Боровкова НВ, Хватов ВБ. Влияние концентрации тромбоцитарного фактора роста на пролиферативную активность фибробластов человека. Клеточные технологии в биологии и медицине. 2013; 2: 111–115. Makarov MS, Storozheva MV, Konyushko OI, Borovkova NV, Khvatov VB. Vliyanie kontsentratsii trombotsitarnogo faktora rosta na proliferativnuyu aktivnost' fi broblastov cheloveka. Kletochnye tekhnologii v biologii i meditsine. 2013; 2: 111–115.

131. Tahara A, Yasuda M, Itagane H, Toda I, Teragaki M, Akioka K. et. al. Plasma levels of platelet-derived growth factor in normal subjects and patients with ischemic heart disease. Am Heart J. 1991; 122 (4 Pt 1): 986–992. DOI:10.1016/0002-8703(91)90462-Q. PMID: 1833965.

132. Ogawa H, Yasue H, Misumi I, Masuda T, Okumura K, Bannai S. et al. Plasma platelet-derived growth factor levels in coronary circulation in unstable angina pectoris. Am J Cardiol. 1992; 69 (5): 453–456. DOI: 10.1016/0002-9149(92)90984-7. PMID: 1736605.

133. Edelberg JM, Aird WC, Wu W, Rayburn H, Mamuya WS, Mercola M, Rosenberg RD. PDGF mediates cardiac microvascular communication. J Clin Invest. 1998; 102 (4): 837–843. DOI: 10.1172/JCI3058.PMID: 9710453.

134. Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S et al. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation. 2002; 105 (5): 608–613. DOI: 10.1161/hc0502.103672. PMID: 11827927

135. Edelberg JM, Cai D, Xaymardan M. Translation of PDGF cardioprotective pathways. Cardiovasc Toxicol. 2003; 3 (1): 27–35. DOI: 10.1385/CT:3:1:27. PMID: 12668888.

136. Wang H, Yin Y, Li W, Zhao X, Yu Y, Zhu J et al. Over-expression of PDGFR-β promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway. PLoS One. 2012; 7 (2): e30503. DOI: 10.1371/journal.pone.0030503. PMID:22355314.

137. Fressinaud C, Vallat JM, Pouplard-Barthelaix A. Platelet-derived growth factor partly prevents chemically induced oligodendrocyte death and improves myelin-like membranes repair in vitro. Glia. 1996; 16 (1): 40–50. DOI: 10.1002/(SICI)1098- 1136(199601)16:1<40::AID-GLIA5>3.0.CO;2-F.PMID: 8787772.

138. Renner O, Tsimpas A, Kostin S, Valable S, Petit E, Schaper W, Marti HH. Time- and cell type-specifi c induction of platelet-derived growth factor receptorbeta during cerebral ischemia. Brain Res Mol Brain Res. 2003; 113 (1–2): 44–51. DOI: 10.1016/S0169- 328X(03)00085-8. PMID: 12750005.

139. Shen J, Ishii Y, Xu G, Dang TC, Hamashima T, Matsushima T et al. PDGFR-β as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab. 2012; 32 (2): 353–367. DOI: 10.1038/jcbfm.2011.136. PMID: 21952111.

140. Moriya J, Wu X, Zavala-Solorio J, Ross J, Liang XH, Ferrara N. Platelet-derived growth factor C promotes revascularization in ischemic limbs of diabetic mice. J Vasc Surg. 2014; 59 (5): 1402–1409. e1–4. DOI: 10.1016/j.jvs.2013.04.053. PMID: 23856609.

141. Wieman TJ, Smiell JM, Su Y. Effi cacy and safety of a topical gel formulation of recombinant human plateletderived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care. 1998; 21 (5): 822–827. DOI: 10.2337/ diacare.21.5.822. PMID: 9589248.

142. Embil JM, Papp K, Sibbald G, Tousignant J, Smiell JM, Wong B, Lau CY. Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: an open-label clinical evaluation of effi cacy. Wound Repair Regen. 2000; 8 (3):162–168. DOI: 10.1046/j.1524-475x.2000.00162.x. PMID: 10886806.

143. Robson MC, Phillips LG, Thomason A, Altrock BW, Pence PC, Heggers JP et al. Recombinant human platelet-derived growth factor-BB for the treatment of chronic pressure ulcers. Ann Plast Surg. 1992; 29 (3): 193–201. PMID: 1524367.

144. Friedlaender GE, Lin S, Solchaga LA, Snel LB, Lynch SE. The role of recombinant human platelet- derived growth factor-BB (rhPDGF-BB) in orthopaedic bone repair and regeneration. Curr Pharm Des. 2013; 19 (19): 3384–3390. DOI: 10.2174/1381612811319190005. PMID: 23432673.

145. Nakamura T, Nawa K, Ichihara A. Partial purifi cation and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun. 1984; 122 (3): 1450–1459. DOI: 10.1016/0006-291X(84)91253-1. PMID: 6477569.

146. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995; 373: 699–702. DOI: 10.1038/373699a0.PMID: 7854452.

147. Boros P, Miller CM. Hepatocyte growth factor: a multifunctional cytokine. Lancet. 1995; 345 (8945): 293–295. DOI: 10.1016/S0140-6736(95)90279-1. PMID: 7837864.

148. Isobe M, Futamatsu H, Suzuki J. Hepatocyte growth factor: Effects on immune-mediated heart diseases. Trends Cardiovasc Med. 2006; 16 (6): 188–193. DOI: 10.1016/j.tcm.2006.03.007. PMID: 16839861.

149. Itoh H, Naganuma S, Takeda N, Miyata S, Uchinokura S, Fukushima T et al. Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator- defi cient mice. Gastroenterology. 2004; 127 (5): 1423–1435. DOI: 10.1053/j.gastro.2004.08.027.PMID: 15521012.

150. Miyazawa K. Hepatocyte growth factor activator (HGFA): a serine protease that links tissue injury to activation of hepatocyte growth factor. FEBS J. 2010; 277 (10): 2208–2214. DOI: 10.1111/j.1742-4658.2010.07637.x. PMID: 20402766.

151. Nakamura T, Nawa K, Ichihara A. Partial purifi cation and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun. 1984; 122 (3): 1450–1459. DOI: 10.1016/0006-291X(84)91253-1. PMID: 6477569.

152. Balkovetz DF, Lipschutz JH. Hepatocyte growth factor and the kidney: it is not just for the liver. Int Rev Cytol. 1998; 186: 225–260. DOI: 10.1016/S0074- 7696(08)61055-4. PMID: 9770301.

153. Matsumori A, Furukawa Y, Hashimoto T, Ono K, Shioi T, Okada M et al. Increased circulating hepatocyte growth factor in the early stage of acute myocardial infarction. Biochem Biophys Res Commun. 1996;221 (2): 391–395. DOI: 10.1006/bbrc.1996.0606. PMID: 8619866.

154. Rychli K, Richter B, Hohensinner PJ, Kariem Mahdy A, Neuhold S, Zorn G et al. Hepatocyte growth factor is a strong predictor of mortality in patients with advanced heart failure. Heart. 2011; 97 (14): 1158–1163. DOI: 10.1136/hrt.2010.220228. PMID: 21572126.

155. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplifi cation of ngiogenesis. Circulation. 1998; 97 (4): 381–390. DOI: 10.1161/01. CIR.97.4.381. PMID: 9468212.

156. Aoki M, Morishita R, Taniyama Y, Kaneda Y, Ogihara T. Therapeutic angiogenesis induced by hepatocyte growth factor: potential gene therapy for ischemic diseases. J Atheroscler Thromb. 2000; 7 (2): 71–76. DOI: 10.5551/jat1994.7.71. PMID: 11426585.

157. Madonna R, Cevik C, Nasser M, De Caterina R. Hepatocyte growth factor: molecular biomarker and player in cardioprotection and cardiovascular regeneration. Thromb Haemost. 2012; 107 (4): 656–661. DOI: 10.1160/TH11-10-0711. PMID: 22318499.

158. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther. 2001; 8 (3): 181–189. PMID: 11313789.

159. Morishita R, Aoki M, Hashiya N, Makino H, Yamasaki K, Azuma J et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension. 2004; 44 (2): 203–209. DOI: 10.1161/01.HYP.0000136394.08900.ed. PMID: 15238569.

160. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008; 118 (1): 58–65. DOI: 10.1161/CIRCULATIONAHA.107.727347. PMID:18559703.

161. Morishita R, Makino H, Aoki M, Hashiya N, Yamasaki K, Azuma J et al. Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol. 2011; 31 (3): 713–720. DOI:

162. 1161/ATVBAHA.110.219550. PMID: 21183732.

163. Чертков ИЛ, Фриденштейн АЯ. Клеточные основы кроветворения. М.: Медицина, 1977: 8–27. Chertkov IL, Fridenshteyn AYa. Kletochnye osnovy krovetvoreniya. M.: Meditsina, 1977: 8–27.

164. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003; 121 (2): 368–374. DOI: 10.1046/j.1365-2141.2003.04284.x. PMID: 12694261.

165. Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959; 38: 1709–1716. DOI: 10.1172/JCI103949.PMID: 13837954.

166. Фриденштейн АЯ, Чайлахян РК, Лациник НВ, Панасюк АФ. Кейлис-Борок ИВ. Стромальные клетки, ответственные за перенос микроокружения в кроветворной и лимфоидной ткани. Проблемы гематологии и переливания крови. 1973; 18 (10): 14–23. Fridenshteyn AYa, Chaylakhyan RK, Latsinik NV, Panasyuk AF. Keylis-Borok IV. Stromal cells responsible for the transfer of microsurroundings in the hematopoietic and lymphoid tissue. Probl gematol pereliv krovi. 1973; 18 (10): 14–23. PMID: 4591075. [Article in Russian, No abstract available].

167. Фриденштейн АЯ, Чайлахян РК, Герасимов ЮВ. Пролиферативные и дифференцировочные потенции скелетогенных костномозговых колониеобразующих клеток. Цитология. 1986; 28 (3): 341–349. Fridenshteyn AYa, Chaylakhyan RK, Gerasimov YuV. Proliferative and differentiation potentials of skeletogenic bone marrow colony-forming cells. Tsitologiia. 1986; 28 (3): 341–349. PMID: 3521008. [Article in Russian, English abstract].

168. Shi Q, Rafi i S, Wu MH, Wijelath ES, Yu C, Ishida A et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998; 92 (2): 362–367. PMID: 9657732.

169. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001; 107 (11): 1395–1402. DOI: 10.1172/JCI12150. PMID: 11390421.

170. Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med. 2012; 1 (5): 403–408. DOI: 10.5966/sctm.2011-0064. PMID: 23197819.

171. Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 2006; 34 (5): 548–565. DOI: 10.1080/01926230600939856. PMID: 17067943.

172. Alvarez-Viejo M, Menendez-Menendez Y, Blanco-Gelaz MA, Ferrero-Gutierrez A, Fernandez-Rodriguez MA, Gala J, Otero-Hernandez J. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013; 45 (1): 434–439. DOI: 10.1016/j.transproceed.2012.05.091. PMID: 23375334.

173. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al. Neovascularization of ischemic myocardium by human bone-marrow-derived ngioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001; 7 (4): 430–436. DOI: 10.1038/86498. PMID: 11283669.

174. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276 (5309): 71–74. DOI: 10.1126/science.276.5309.71. PMID: 9082988.

175. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development. 2004; 13 (4): 436–448. DOI: 10.1089/scd.2004.13.436. PMID: 15345137.

176. Pittenger MF. Mesenchymal stem cells from adult bone marrow. Methods Molecular Biology. 2008; 449: 27–44. DOI: 10.1007/978-1-60327-169-1_2. PMID: 18370081.

177. Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009; 4 (1): 34–43. DOI: 10.2174/157488809787169039. PMID: 19149628.

178. Astori G, Soncin S, Lo Cicero V, Siclari F, Sürder D, Turchetto L et al. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products. Am J Transl Res. 2010; 2 (3): 285–295. PMID: 20589167.

179. Challen G, Little M. A side order of stem cells: The SP phenotype. Stem Cells. 2006; 24 (1): 3–12. DOI: 10.1634/stemcells.2005-0116. PMID: 16449630.

180. Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells. 2008; 26 (8): 2083–2092. DOI:10.1634/stemcells.2007-0922. PMID: 18511604.

181. Ji KH, Xiong J, Hu KM, Fan LX, Liu HQ. Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells. Ann Hematol. 2008; 87: 431–438. DOI: 10.1007/s00277-008-0470-3. PMID: 18338169.

182. Park C, Ma YD, Choi K. Evidence for the hemangioblast. Exp Hematol. 2005; 33 (9): 965–970. DOI: 10.1016/j.exphem.2005.06.003. PMID: 16140143.

183. Шумаков ВИ, Онищенко НА, Крашенинников МЕ, Расулов МФ, Потапов ИВ, Берсенев АВ и др. Экспериментальное обоснование эффективности применения стволовых и прогениторных клеток костного мозга для регуляции восстановительных процессов в органах при остром и хроническом повреждениях. Вестник Российской академии медицинских наук. 2004; 9: 44–47. Shumakov VI, Onishchenko NA, Krasheninnikov ME, Rasulov MF, Potapov IV, Bersenev AV et al. Experimental substantiation of the effi ciency of using the stem and progenitory cells of the bone marrow for regulating the recovery processes in organs in acute and chronic affections. Vestn Ross Akad Med Nauk. 2004; 9: 44–47. PMID: 15526686. [Article inRussian, No abstract available].

184. Salem HK, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells. 2010; 28: 585–596. DOI: 10.1002/stem.269. PMID: 19967788.

185. Miyamoto Y, Suyama T, Yashita T, Akimaru H, Kurata H. Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells. J Mol Cell Cardiol. 2007; 43 (5): 627–635. DOI: 10.1016/j.yjmcc.2007.08.001.PMID: 17900610.

186. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogeneous populatons of non-hematopoietic stem cells. Leukemia. 2005; 19 (7): 1118–1127. DOI: 10.1038/sj.leu.2403796. PMID: 15902288.

187. Сухих ГТ, Малайцев ВВ, Богданова ИМ, Дубровина ИВ. Мезенхимальные стволовые клетки. Бюллетень экспериментальной биологии и медицины. 2002; 133 (2): 103–109. Sukhikh GT, Malaytsev VV, Bogdanova IM, Dubrovina IV. Mesenchymal stem cells. Bull Exp Biol Med. 2002; 133 (2): 103–109. PMID: 12428273. [Article in Russian, No abstract available].

188. Тепляшин АС, Коржикова СВ, Шарифуллина СЗ, Чупикова НИ, Ростовская МС, Савченкова ИП. Характеристика мезенхимальных стволовых клеток человека, выделенных из костного мозга и жировой ткани. Цитология. 2005; 47 (2): 130–135. Teplia shin AS, Korzhikova SV, Sharifullina SZ, Chupikova NI, Rostovskaia MS, Savchenkova IP. Characteristics of human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tsitologiia. 2005; 47 (2): 130–135. PMID: 16706175. [Article in Russian, English abstract].

189. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007; 25 (10): 2648–2659. DOI: 10.1634/stemcells.2007-0226. PMID: 17615264.

190. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284 (5411): 143–147. DOI: 10.1126/science.284.5411.143. PMID: 10102814.

191. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999; 103 (5): 697–705. DOI: 10.1172/JCI5298. PMID: 10074487.

192. Lee JH, Kosinski PA, Kemp DM. Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation. Exp Cell Res. 2005; 307 (1): 174–182. DOI: 10.1016/j.yexcr. 2005.03.008. PMID: 15922737.

193. Шахов ВП, Попов СВ, Афанасьев СА. Пластический потенциал мезенхимальных стволовых клеток костного мозга для лечения заболеваний, связанных с повреждением сердечной ткани. Кардиология. 2005; 45 (2): 45–46. Shakhov VP, Popov SV, Afanas'ev SA. Potential of bone marrow mesenchymal stem cells for the treatment of diseases associated with damage of cardiac tissue. Kardiologiia. 2005; 45 (2): 45–46. PMID: 15798705. [Article in Russian, English abstract].

194. Rüger BM, Breuss J, Hollemann D, Yanagida G, Fischer MB, Mosberger I. Vascular morphogenesis by adult bone marrow progenitor cells in three-dimensional fi brin matrices. Differentiation. 2008; 76 (7): 772–783. DOI: 10.1111/j.1432-7436.2007.00259.x. PMID: 18177424.

195. Koutna I, Peterkova M, Simara P, Stejskal S, Tesarova L, Kozubek M. Proliferation and differentiation potential of CD133+ and CD34+ populations from the bone marrow and mobilized peripheral blood. Ann Hematol. 2011; 90 (2): 127–137. DOI: 10.1007/s00277-010-1058-2. PMID: 20821012.

196. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001; 103 (23): 2776–2779. DOI: 10.1161/ hc2301.092122. PMID: 11401930.

197. Повещенко ОВ, Повещенко АФ, Коненков ВИ. Физиологические и цитологические основы клеточной регуляции ангиогенеза. Успехи физиологических наук. 2012; 43 (3): 48–61. Poveshchenko OV, Poveshchenko AF, Konenkov VI. Physiological and cytological bases of cellular regulation of angiogenesis. Usp Fiziol Nauk. 2012; 43 (3): 48–61. PMID: 23101379. [Article in Russian, English abstract].

198. Crosby JR, Kaminsky WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF. Endothelial cells of hematopoietic origin make a signifi cant contribution to adult blood vessel formation. Circ Res. 2000; 87 (9): 728–730. DOI: 10.1161/01.RES.87.9.728.PMID: 11055974.

199. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008; 103 (11): 1204–1219. DOI: 10.1161/CIRCRESAHA. 108.176826. PMID: 19028920.

200. Tongers J, Roncalli JG, Losordo DW. Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res. 2010; 79 (3): 200–206. DOI: 10.1016/j.mvr.2010.01.012.PMID: 20144623.

201. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002; 360 (9331):427–435. DOI: 10.1016/S0140-6736(02)09670-8. PMID: 12241713.

202. Беленков ЮН, Агеев ФТ, Мареев BЮ, Савченко ВГ. Мобилизация стволовых клеток костного мозга в лечении больных сердечной недостаточностью. Протокол и первые результаты исследования РОТ ФРОНТ (РОсТовые Факторы в лечении больных с хронической сердечной недостаточностью). Кардиология. 2003; 43 (3): 7–12. Belenkov IuN, Ageev FT, Mareev VIu, Savchenko VG. Mobilization of bone marrow stem cells in the management of patients with heart failure. Protocol and fi rst results of ROT FRONT trial. Kardiologiia. 2003; 43 (3): 7–12. PMID: 12891252. [Article in Russian, English abstract].

203. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy


Для цитирования:


Булгин Д.В., Андреева О.В. ТЕРАПЕВТИЧЕСКИЙ АНГИОГЕНЕЗ С ИСПОЛЬЗОВАНИЕМ ФАКТОРОВ РОСТА И КЛЕТОК КОСТНОГО МОЗГА: БИОЛОГИЧЕСКИЕ ОСНОВЫ И ПЕРСПЕКТИВЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ. Вестник трансплантологии и искусственных органов. 2015;17(3):89-111. https://doi.org/10.15825/1995-1191-2015-3-89-111

For citation:


Bulgin D.V., Andreeva O.V. THERAPEUTIC ANGIOGENESIS BY GROWTH FACTORS AND BONE MARROW MONONUCLEAR CELLS ADMINISTRATION: BIOLOGICAL FOUNDATION AND CLINICAL PROSPECTS. Russian Journal of Transplantology and Artificial Organs. 2015;17(3):89-111. (In Russ.) https://doi.org/10.15825/1995-1191-2015-3-89-111

Просмотров: 862


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)