Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

ТРАНСПЛАНТАЦИЯ ЖИРОВОЙ ТКАНИ С ЦЕЛЬЮ ЗАМЕСТИТЕЛЬНОЙ ТЕРАПИИ

https://doi.org/10.15825/1995-1191-2014-4-135-143

Полный текст:

Аннотация

Трансплантацию эндокринных органов и тканей часто рассматривают как альтернативу инъекционной заместительной терапии гормонами и другими недостающими факторами, имеющую целый ряд преимуществ. Накопившиеся в течение последних двух десятилетий сведения о жировой ткани как эндокринном органе, играющем важнейшую роль в ряде ключевых физиологических процессов, поднимают вопрос о целесообразности ее использования для трансплантаций с целью компенсации врожденных метаболических дефицитов. В данном обзоре приведены примеры факторов, секретируемых жировой тканью, недостаток которых может быть связан с теми или иными патологическими состояниями у человека. Рассмотрены практические аспекты трансплантаций жира, такие как доступность донорской ткани, ее чувствительность к отторжению, целесообразность иммуносупрессии и возможности создания немедикаментозной толерантности.

Об авторах

В. Г. Абламуниц
Кафедра микробиологии, вирусологии и иммунологии Санкт-Петербургского государственного педиатрического медицинского университета, Санкт Петербург, Российская Федерация
Россия

194100, Санкт-Петербург, СПбГПМУ Минздрава России, Литовская ул., 2. Тел. +7 (921) 754-23-87



С. Э. Клебанов
Госпиталь Св. Луки, Центр по изучению ожирения, Колумбийский университет, Нью-Йорк, США
Россия


Список литературы

1. Gold RH, Steinbach HL. Lipoatrophic diabetes mellitus (generalized lipodystrophy): roentgen fi ndings in two brothers with congenital disease. Am J Roentgenol Radium Ther Nucl Med. 1967 Dec; 101 (4): 884–896.

2. Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr. 1996; Suppl 13: 2.

3. Pardini VC, Victoria IM, Rocha SM, Andrade DG, Rocha AM, Pieroni FB et al. Leptin levels, beta-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatropic diabetes. J Clin Endocrinol Metab. 1998; 83: 503–508.

4. Moitra J, Mason M M, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B et al. Life without white WAT: a transgenic mouse. Genes Dev. 1998, 12: 3168–3181.

5. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000; 105: 271–278.

6. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372: 425–432.

7. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999; 401: 73–76.

8. Colombo C, Cutson JJ, Yamauchi T, Vinson C, Kadowaki T, Gavrilova O et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes. 2002; 51: 2727–2733.

9. Chessler SD, Fujimoto WY, Shofer JB, Boyko EJ, Weigle DS. Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes. 1998; 47: 239–243.

10. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395: 763–770.

11. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000; 62: 413–437.

12. Ingalis AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950; 41: 317.

13. Klebanov S, Astle CM, De Simon O, Ablamunits V, Harrison DE. Transplantation of normal adipose tissue to female ob/ob mice protects them from obesity, normalizes their insulin sensitivity and restores fertility. J Endocrinol. 2005; 186: 203–211.

14. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obesity. 2002; 26: 1407–1433.

15. Proenca AR, Sertie RA, Oliveira AC, Campaaa AB, Caminhotto RO, Chimin P et al. New concepts in white adipose tissue physiology. Braz J Med Biol Res. 2014; 47: 192–205.

16. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin defi ciency is associated with severe early-onset obesity in humans. Nature. 1997; 387: 903–908.

17. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998; 3: 213–215.

18. Woods KA, Camacho-Hubner C, Clark AJL, Savage MO. Intrauterine growth retardation and postnatal growth failure associated with deletion of insulin-like growth factor I gene. New Engl J Med. 1996; 355: 1363–1367.

19. Bonapace G, Concolino D, Formicola S, Strisciuglio P. A novel mutation in a patient with insulin-like growth factor 1 (IGF1) defi ciency. J Med Genet. 2003; 40: 913– 917.

20. Ghiselli G, Schaefer EJ, Gascon P, Brewer HB, Jr. Type III hyperlipoproteinemia associated with apolipoprotein E defi ciency. Science. 1981; 214: 1239–1241.

21. Zannis VI, Breslow JL. Characterization of a unique human apolipoprotein E variant associated with type III hyperlipoproteinemia. J. Biol. Chem. 1980; 255: 1759– 1762.

22. Hayden MR, Ma Y. Molecular genetics of human lipoprotein lipase defi ciency. Mol Cell Biochem. 1992; 113: 171–176.

23. Dieval J, Nguyen G, Gross S, Delobel J, Kruithof EKO. A lifelong bleeding disorder associated with a defi ciency of plasminogen activator inhibitor type 1. Blood. 1991; 77: 528–532.

24. Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989; 83: 368–381.

25. Wyatt HR. The prevalence of obesity. Prim Care. 2003; 30: 267–279.

26. Fagan FD. Liposuction. An update on one of the most frequently performed and controversial surgeries. Can Oper Room Nurs J. 2001; 19: 22–24.

27. Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989; 83: 368–381.

28. Sommer B, Sattler G. Current concepts of fat graft survival: histology of aspirated adipose tissue and review of the literature. Dermatol Surg. 2000; 26: 1159–1166.

29. Hausberger FX. Behavior of transplanted adipose tissue of hereditary obese mice. Anat Rec. 1959; 135: 109–113.

30. Liebelt RA. Response of adipose tissue in experimental obesity as infl uenced by genetic, hormonal and neurogenic factors. Ann NY Acad Sci. 1963; 110: 723– 748.

31. Meade CJ, Ashwell M, Sowter C. Is genetically transmitted obesity due to an adipose tissue defect? Proc R Soc Lond B Biol Sci. 1979; 205: 395–410.

32. Ablamunits V, Goldstein AJ, Tovbina MH, Gaetz HP, Klebanov S. Acute rejection of white adipose tissue allograft. Cell Transplant. 2007; 16 (4): 375–390.

33. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-defi cient mice have no mature B and T lymphocytes. Cell. 1992; 68: 869– 877.

34. Ablamunits V, Klebanov S, Giese SY, Herold KC. Functional human to mouse adipose tissue xenotransplantation. J Endocrinol. 2012 Jan; 212 (1): 41–47.

35. McDiarmid SV, Ettenger RB, Hawkins RA et al. The impairment of true glomerular fi ltration rate in longterm cyclosporine-treated pediatric allograft recipients. Transplantation. 1990; 49: 81–85.

36. Fisher NC, Nightingale PG, Gunson BK, Lipkin GW, Neuberger JM. Chronic renal failure following liver transplantation: A retrospective analysis. Transplantation. 1998; 66: 59–66.

37. Stepkowski SM. Molecular targets for existing and novel immunosuppressive drugs. Expert Rev Mol Med. 2000, Jun 21: 1–23.

38. Min DI, Monaco AP. Complications associated with immunosuppressive therapy and their management. Pharmacotherapy. 1991; 11: 119S–125S.

39. Danesi R, Del Tacca M. Hematologic toxicity of immunosuppressive treatment. Transplant Proc. 2004; 36: 703–704.

40. Boitard C, Bach JF. Long term complications on conventional immunosuppressive treatment. Adv Nephrol. 1989; 18: 335–354.

41. Ferran C, Sheenan K, Dy M et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur J Immunol. 1990; 20: 509–515.

42. Sgro C. Side effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: Bibliographic review. Toxicology. 1995; 105: 23–29.

43. Kupiec-Weglinski JW, Padberg W, Uhteg LC, Towpik E, Lord RH, Ma L et al. Anti-interleukin-2 receptor (IL- 2R) antibody against rejection of organ grafts. Transplant Proc. 1987; 19: 591–593.

44. Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996; 381: 434–437.

45. Qin S, Cobbold S, Benjamin R, Waldmann H. Induction of classical transplantation tolerance in the adult. J Exp Med. 1989; 169: 779–794.

46. Newell KA, He G, Guo Z, Kim O, Szot GL, Rulifson I et al. Cutting edge: blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD4+ but not CD8+ T cells. J Immunol. 1999; 163: 2358–2362.

47. Tinubu SA, Hakimi J, Kondas JA, Bailon P, Familletti PC, Spence C et al. Humanized antibody directed to the IL-2 receptor beta-chain prolongs primate cardiac allograft survival. J Immunol. 1994; 153: 4330–4338.

48. Thomas JM, Hubbard WJ, Sooudi SK, Thomas FT. STEALTH matters: a novel paradigm of durable primate allograft tolerance. Immunol Rev. 2001; 183: 223–233.

49. Laub R, Brecht R, Dorsch M, Valley U, Wenk K, Emmrich F. Anti-human CD4 induces peripheral tolerance in a human CD4+, murine CD4-, HLA-DR+ advanced transgenic mouse model. J Immunol. 2002; 169: 2947– 2955.

50. Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berring JD, Buchanan K et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med. 1999; 5: 686–690.

51. Gozzo JJ, Wood ML, Monaco AP. Use of allogenic, homozygous bone marrow cells for the induction of specifi c immunologic tolerance in mice treated with antilymphocyte serum. Surg Forum. 1970; 21: 281–284.

52. De Vries-van der Zwan A, Besseling AC, van Twuyver E, Boog CJP, de Waal LP. A substantial level of mixed chimerism is required for the induction of permanent transplantation tolerance. Transplant Immunol. 1996; 4: 232–240.

53. Wekerle T, Sykes M. Mixed chimerism and transplantation tolerance. Annu Rev Med. 2001; 52: 353–370.

54. Wekerle T, Blaha P, Koporc Z, Bigenzahn S, Pusch M, Muehlbacher F. Mechanisms of tolerance induction through the transplantation of donor hematopoietic stem cells: central versus peripheral tolerance. Transplantation. 2003; 75: 21S–25S.

55. Sharabi Y, Sachs DH. Mixed chimerism and permanent specifi c transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med. 1989; 169: 493–502.

56. Down JD, Tarbell NJ, Thames HD, Mauch PM. Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. Blood. 1991; 77: 661–669.

57. Kripke ML. Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst. 1974; 53: 1333–1336.

58. Aubin F, Mousson C. Ultraviolet light-induced regulatory (suppressor) T cells: an approach for promoting induction of operational allograft tolerance? Transplantation. 2004; 77 (1 Suppl): S29–31.

59. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299: 1057–1061.

60. Wang R, Wang-Zhu Y, Grey H. Interactions between double positive thymocytes and high affi nity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc Natl Acad Sci U S A. 2002 Feb 19; 99 (4): 2181– 2186.

61. Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact- independent type 1-like regulatory T cells. J Exp Med. 2002; 196: 247–253.

62. Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 2003; 102: 4107–4114.

63. Liu J, Liu Z, Witkowski P, Vlad G, Manavalan JS, Scotto L et al. Rat CD8+ FOXP3+ T suppressor cells mediate tolerance to allogeneic heart transplants, inducing PIR-B in APC and rendering the graft invulnerable to rejection. Transpl Immunol. 2004; 13: 239–247.

64. Rivas JM, Ullrich SE. The role of IL-4, IL-10, and TNFalpha in the immune suppression induced by ultraviolet radiation. J Leukoc Biol. 1994; 56: 769–775.

65. Schwarz A, Beissert S, Grosse-Heitmeyer K, Gunzer M, Bluestone JA, Grabbe S et al. Evidence for functional relevance of CTLA-4 in ultraviolet-radiation-induced tolerance. J Immunol. 2000; 165: 1824–1831.

66. Tomimori Y, Ikawa Y, Oyaizu N. Ultraviolet-irradiated apoptotic lymphocytes produce interleukin-10 by themselves. Immunol Lett. 2000; 71: 49–54.

67. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995; 270: 26746–26749.

68. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002; 8: 731–737.

69. Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987; 237: 402–405.

70. White RT, Damm D, Hancock N, Rosen BS, Lowell BB, Usher P et al. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992; 267: 9210–9213.

71. Li Y, Totsune K, Takeda K, Furuyama K, Shibahara S, Takahashi K. Decreased expression of adrenomedullin during adipocyte-differentiation of 3T3-L1 cells. Hypertens Res. 2003; 26 Suppl: S41–44.

72. Shimosawa T, Ogihara T, Matsui H, Asano T, Ando K, Fujita T. Defi ciency of adrenomedullin induces insulin resistance by increasing oxidative stress. Hypertension. 2003; 41: 1080–1085.

73. Cassis LA, Saye J, Peach MJ. Location and regulation of rat angiotensinogen messenger RNA. Hypertension. 1988; 11 (6 Pt 2): 591–596.

74. Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF et al. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A. 1995; 92: 2735–2739.

75. Juge-Aubry CE, Somm E, Chicheportiche R, Burger D, Pernin A, Cuenod-Pittet B et al. Regulatory effects of interleukin (IL)-1, interferon-beta, and IL-4 on the production of IL-1 receptor antagonist by human adipose tissue. J Clin Endocrinol Metab. 2004; 89: 2652–2658.

76. Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A et al. Development of chronic infl ammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-defi cient mice. J Exp Med. 2000; 191: 313–320.

77. Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R et al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest. 2008; 118: 3343–3354.

78. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG et al. Severe hypercholesterolemia and therosclerosis in apolipoprotein E-defi cient mice created by homologous recombination in ES cells. Cell. 1992; 71: 343–353.

79. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992; 258: 468–471.

80. Kuipers F, Lin Y, Havinga R, Bloks V, Verkade HJ, Jong MC et al. Impaired production of very low ensity lipid proteins by apolipoprotein E-defi cient mouse hepatocytes in primary culture. J Clin Invest. 1997; 100: 2915–2922.

81. Murray I, Havel PJ, Sniderman AD, Cianfl one K. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating proten. Endocrinology. 2000; 141: 1041–1049.

82. Xia Z, Sniderman AD, Cianfl one K. Acylation-stimulating protein (ASP) defi ciency induces obesity resistance and increased energy expenditure in ob/ob mice. J Biol Chem. 2002; 277: 45874–45879.

83. Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs. 2008; 17: 327–333, doi: 10.1517/13543784.17.3.327.

84. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005; 307: 426–430.

85. Sawdey M, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specifi city and induction by lipopolysaccharide, tumor necrosis factor-α, and transforming growth factor-β. J Clin Invest. 1991; 88: 1346–1353.

86. Samad F, Yamamoto K, Loskutoff DJ. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest. 1996; 97: 37–46.

87. Carmeliet P, Stassen JM, Schoonjans L, Ream B, Van den Oord JJ, De Mol M et al. Plasminogen activator inhibitor- 1 gene-defi cient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest. 1993; 92: 2756–2760.

88. Doglio A, Dani C, Fredrikson G, Grimaldi P, Ailhaud G. Acute regulation of insulin-like growth factor-I gene expression by growth hormone during adipose cell differentiation. EMBO J. 1987; 6: 4011–4016.

89. Liu J-P, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF-I receptor (Igf1r). Cell. 1993; 75: 59–72.

90. Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR et al. Effects of an IGF1 gene null mutation on mouse reproduction. Mol Endocrinol. 1996; 10: 903–918.

91. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997; 82: 4196–4200.

92. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T et al. Impaired immune and acute phase response in interleukin-6-defi cient mice. Nature. 1994; 368: 339–342.

93. Dalrymple SA, Slattery R, Aud DM, Krishna M, Lucian LA, and Murray R. Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infect. Immun. 1996; 64: 3231–3235.

94. Fried SK, DiGirolamo M. Lipoprotein lipase secretion from isolated rat fat cells of different size. Life Sci. 1986; 39: 2111–2119.

95. Coleman T, Seip RL, Gimble JM, Lee D, Maeda N, Semenkovich CF. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J Biol Chem. 1995; 270: 12518–12525.

96. Weinstock PH, Bisgaier CL, Aalto-Setala K, Radner H, Ramakrishnan R, Levak-Frank S et al. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Invest. 1995; 96: 2555–2568.

97. McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-defi cient mice. J Clin Invest. 2002; 109: 595–601.

98. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC et al. Identifi cation of omentin as a novel depot-specifi c adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006; 290: E1253–E1261.

99. Bradshaw AD, Graves DC, Motamed K, Sage EH. SPARC-null mice exhibit increased adiposity without signifi cant differences in overall body weight. Proc Natl Acad Sci U S A. 2003; 100: 6045–6050.

100. Smas CM, Sul HS. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell. 1993; 73: 725–734.

101. Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol. 2002; 22: 5585–5592.

102. Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409: 307–312.

103. Richardson RL, Campion DR, Hausman GJ, Wright JT. Transforming growth factor type beta (TGF-beta) and adipogenesis in pigs. J Anim Sci. 1989; 67: 2171– 2180.

104. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al. Transforming growth factor beta 1 null mutation in mice causes excessive infl ammatory response and early death. Proc Natl Acad Sci U S A. 1993; 90: 770–774.

105. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993: 259: 87–91.

106. Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002; 168 (9): 4620–4627.


Для цитирования:


Абламуниц В.Г., Клебанов С.Э. ТРАНСПЛАНТАЦИЯ ЖИРОВОЙ ТКАНИ С ЦЕЛЬЮ ЗАМЕСТИТЕЛЬНОЙ ТЕРАПИИ. Вестник трансплантологии и искусственных органов. 2014;16(4):135-143. https://doi.org/10.15825/1995-1191-2014-4-135-143

For citation:


Ablamunits V.G., Klebanov S.E. TRANSPLANTATION OF ADIPOSE TISSUE AS A REPLACEMENT THERAPY. Russian Journal of Transplantology and Artificial Organs. 2014;16(4):135-143. (In Russ.) https://doi.org/10.15825/1995-1191-2014-4-135-143

Просмотров: 579


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)