Association of plasma TGF-β1 levels with polymorphic loci and TGFB1 haplotypes rs1800469 and rs1800470 in pediatric liver transplant recipients
https://doi.org/10.15825/1995-1191-2025-2-179-188
Abstract
Objective: to investigate the association between plasma TGF-β1 levels in pediatric liver transplant (LT) recipients, both preand post-transplantation, and the polymorphic alleles and haplotypes at rs1800469 and rs1800470 loci of the TGFB1 gene.
Materials and methods. The study cohort comprised 135 pediatric LT recipients, aged 3 to 98.4 months (mean age 8.2 years, median 8 months). The control group consisted of 77 healthy individuals, aged 30.3 ± 5.2 years. Plasma TGF-β1 levels were quantified using ELISA. Genomic DNA from participants was analyzed for the polymorphic loci rs1800469 and rs1800470 of the TGFB1 gene using real-time polymerase chain reaction PCR with TaqMan probes.
Results. Blood TGF-β1 level in pediatric LT recipients pre-transplant was 4.6 (1.1–9.5) ng/mL. One month post-transplant, cytokine level increased to 6.3 (1.7–15.0) ng/mL (p = 0.008), and after one year, it rose further to 7.0 (1.9–13.5) ng/mL (p = 0.0001). Healthy adults had significantly higher TGF-β1 levels, with a median of 11.7 (6.4–16.9) ng/mL (p = 0.0000), compared to pediatric recipients. The distribution frequencies of the rs1800469 and rs1800470 polymorphic alleles in pediatric LT recipients did not significantly differ from those in healthy individuals. However, the occurrence of rare haplotypes (T-T and C-C) was significantly higher in pediatric recipients. Before transplantation and 1 month after the procedure, TGF-β1 levels in pediatric recipients were not associated with the carriage of the studied alleles or haplotypes. However, at 1-year post-transplant, higher TGF-β1 levels in pediatric recipients were significantly associated with the major alleles (C/C + C/T) of rs1800469 and the rs1800470 T/T genotype, as well as with the T-T haplotype. In healthy individuals, TGF-β1 levels were not influenced by the rs1800469 and rs1800470 alleles individually, but high cytokine levels were associated with the C-C haplotype.
Conclusion. In pediatric LT recipients, elevated TGF-β1 levels at 1-year post-transplant are associated with the presence of the major alleles C (rs1800469) and T (rs1800470), as well as the T-T haplotype of the TGFB1 gene. This suggests that these polymorphic loci may influence the development of post-transplant complications and could potentially serve as biomarkers for predicting clinical outcomes in LT.
About the Authors
R. M. KurabekovaRussian Federation
Rivada М. Kurabekova
1, Shchukinskaya str., Moscow, 123182
O. M. Tsirulnikova
Russian Federation
Moscow
O. E. Gichkun
Russian Federation
Moscow
I. E. Pashkova
Russian Federation
Moscow
O. P. Shevchenko
Russian Federation
Moscow
References
1. Gautier SV, Tsiroulnikova OM, Moysyuk YG, Akhaladze DG, Tsiroulnikova IE, Silina OV et al. Liver transplantation in children: six-year experience analysis. Russian Journal of Transplantology and Artificial Organs. 2014; 16 (3): 54–62. (In Russ.). https://doi.org/10.15825/1995-1191-2014-3-54-62.
2. Baumann U, Karam V, Adam R, Fondevila C, Dhawan A, Sokal E et al. Prognosis of Children Undergoing Liver Transplantation: A 30-Year European Study. Pediatrics. 2022 Oct 1; 150 (4): e2022057424. doi: 10.1542/peds.2022-057424.
3. Hussein MH, Hashimoto T, AbdEl-Hamid Daoud G, Kato T, Hibi M, Tomishige H et al. Pediatric patients receiving ABO-incompatible living related liver transplantation exhibit higher serum transforming growth factor-beta1, interferon-gamma and interleukin-2 levels. Pediatr Surg Int. 2011 Mar; 27 (3): 263–268. doi: 10.1007/s00383-010-2784-1.
4. Briem-Richter A, Leuschner A, Krieger T, Grabhorn E, Fischer L, Nashan B et al. Peripheral blood biomarkers for the characterization of alloimmune reactivity after pediatric liver transplantation. Pediatr Transplant. 2013 Dec; 17 (8): 757–764. doi: 10.1111/petr.12161.
5. Kurabekova R, Tsirulnikova O, Pashkova I, Gichkun O, Mozheyko N, Gautier S, Shevchenko O. Transforming growth factor beta 1 levels in the blood of pediatric liver recipients: Clinical and biochemical correlations. Pediatr Transplant. 2020 May; 24 (3): e13693. doi: 10.1111/petr.13693.
6. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004 May; 18 (7): 816–827. doi: 10.1096/fj.03-1273rev.
7. Kajdaniuk D, Marek B, Borgiel-Marek H, Kos-Kudla B. Transforming growth factor β1 (TGFβ1) in physiology and pathology. Endokrynol Pol. 2013; 64 (5): 384–396. doi: 10.5603/EP.2013.0022.
8. Braczkowski MJ, Kufel KM, Kulińska J, Czyż D, Dittmann A, Wiertelak M et al. Pleiotropic Action of TGFBeta in Physiological and Pathological Liver Conditions. Biomedicines. 2024 Apr 22; 12 (4): 925. doi: 10.3390/biomedicines12040925.
9. Bakalenko N, Kuznetsova E, Malashicheva A. The Complex Interplay of TGF-β and Notch Signaling in the Pathogenesis of Fibrosis. Int J Mol Sci. 2024 Oct 8; 25 (19): 10803. doi: 10.3390/ijms251910803.
10. Martelossi Cebinelli GC, Paiva Trugilo K, Badaró Garcia S, Brajão de Oliveira K. TGF-β1 functional polymorphisms: a review. Eur Cytokine Netw. 2016 Nov 1; 27 (4): 81–89. doi: 10.1684/ecn.2016.0382.
11. Fang J, Liu ZW, Han QY. [Polymorphism of codon25 in signal peptide region of transforming growth factor beta 1 and its association with chronic hepatitis C virus infection]. Zhonghua Gan Zang Bing Za Zhi. 2008 Aug; 16 (8): 586–589.
12. Punia V, Agrawal N, Bharti A, Mittal S, Chaudhary D, Mathur A et al. Association of TGF-β1 Polymorphism and TGF-β1 Levels With Chronic Hepatitis C and Cirrhosis: A Systematic Review and Meta-Analysis. Cureus. 2023 Jun 29; 15 (6): e41157. doi: 10.7759/cureus.41157. eCollection. 2023 Jun.
13. Liu K, Liu X, Gu S, Sun Q, Wang Y, Meng J, Xu Z. Association between TGFB1 genetic polymorphisms and chronic allograft dysfunction: a systematic review and meta-analysis. Oncotarget. 2017 Jul 24; 8 (37): 62463– 62469. doi: 10.18632/oncotarget.19516.
14. Ge YZ, Wu R, Lu TZ, Jia RP, Li MH, Gao XF et al. Combined effects of TGFB1 +869 T/C and +915 G/C polymorphisms on acute rejection risk in solid organ transplant recipients: a systematic review and meta-analysis. PLoS One. 2014 Apr 4; 9 (4): e93938. doi: 10.1371/journal.pone.0093938.
15. Guo P, Liu S, Sun X, Xu L. Association of TGF-β1 polymorphisms and chronic hepatitis C infection: a Metaanalysis. BMC Infect Dis. 2019 Aug 30; 19 (1): 758. doi: 10.1186/s12879-019-4390-8.
16. Wu XD, Zeng K, Gong CS, Chen J, Chen YQ. Transforming growth factor-β genetic polymorphisms on development of liver cirrhosis in a meta-analysis. Mol Biol Rep. 2013 Jan; 40 (1): 535–543. doi: 10.1007/s11033-012-2090-1.
17. Ncbi.nlm.nih.gov [Internet]. The National Center for Biotechnology Information. Bethesda: National Library of Medicine; [cited. 2024 June 17]. Available from: [https://www.ncbi.nlm.nih.gov/snp/?term=TGFB1].
18. Shah R, Rahaman B, Hurley CK, Posch PE. Allelic diversity in the TGFB1 regulatory region: characterization of novel functional single nucleotide polymorphisms. Hum Genet. 2006 Mar; 119 (1–2): 61–74. doi: 10.1007/s00439-005-0112-y.
19. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999 Jan; 8 (1): 93–97. doi: 10.1093/hmg/8.1.93.
20. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR et al. A transforming growth factor-beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003 May 15; 63 (10): 2610–2615.
21. Wang H, Mengsteab S, Tag CG, Gao CF, Hellerbrand C, Lammert F et al. Transforming growth factor-beta1 gene polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J Gastroenterol. 2005 Apr 7; 11 (13): 1929–1936. doi: 10.3748/wjg.v11.i13.1929.
22. Mohy A, Fouad A. Role of transforming growth factor-β1 in serum and –509C>T promoter gene polymorphism in development of liver cirrhosis in Egyptian patients. Meta Gene. 2014 Sep 9; 2: 631–637. doi: 10.1016/j.mgene.2014.08.002.
23. De Brito WB, Queiroz MAF, da Silva Graça Amoras E, Lima SS, da Silva Conde SRS, Dos Santos EJM et al. The TGFB1 –509C/T polymorphism and elevated TGF-β1 levels are associated with chronic hepatitis C and cirrhosis. Immunobiology. 2020 Sep; 225 (5): 152002. doi: 10.1016/j.imbio.2020.152002.
24. Felicidade I, Bocchi M, Ramos MRZ, Carlos LO, Wagner NRF, Campos ACL et al. Transforming growth factor beta 1 (TGFβ1) plasmatic levels and haplotype structures in obesity: a role for TGFβ1 in steatosis development. Mol Biol Rep. 2021 Sep; 48 (9): 6401–6411. doi: 10.1007/s11033-021-06640-2.
25. Rosensweig JN, Omori M, Page K, Potter CJ, Perlman EJ, Thorgeirsson SS, Schwarz KB. Transforming growth factor-beta1 in plasma and liver of children with liver disease. Pediatr Res. 1998 Sep; 44 (3): 402–409. doi: 10.1203/00006450-199809000-00023.
26. Kurabekova RM, Gichkun OE, Tsirulnikova OM, Pashkova IE, Fomina VA, Shevchenko OP, Gautier SV. Analysis of the Association between the Tgfb1 Gene Haplotype and Liver Diseases in Children. Acta Naturae. 2023 Jul-Sep; 15 (3): 75–81. doi: 10.32607/actanaturae.19425.
27. Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006 Aug 1; 22 (15): 1928–1929. doi: 10.1093/bioinformatics/btl268.
28. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol. 2016 May 2; 8 (5): a021873. doi: 10.1101/cshperspect.a021873.
29. Vitiello GAF, Guembarovski RL, Hirata BKB, Amarante MK, de Oliveira CEC, de Oliveira KB et al. Transforming growth factor beta 1 (TGFβ1) polymorphisms and haplotype structures have dual roles in breast cancer pathogenesis. J Cancer Res Clin Oncol. 2018 Apr; 144 (4): 645–655. doi: 10.1007/s00432-018-2585-9.
30. Ser ÖS, Çetinkal G, Kiliçarslan O, Dalgıç Y, Batit S, Keskin K et al. The comparison of serum TGF-beta levels and associated polymorphisms in patients with coronary artery ectasia and normal coronary artery. Egypt Heart J. 2021 Mar 31; 73 (1): 32. doi: 10.1186/s43044-021-00153-w.
31. TrugiloKP,Cebinelli GCM, Pereira É R, Okuyama NCM, Cezar-Dos-Santos F, Castilha EP et al. Haplotype Structures and Protein Levels of TGFB1 in HPV Infection and Cervical Lesion: A Case-Control Study. Cells. 2022 Dec 25; 12 (1): 84. doi: 10.3390/cells12010084.
32. Stadtlober NP, Flauzino T, Santos L, Iriyoda TMV, Costa NT, Lozovoy MAB et al. TGFB1 +869T>C (rs1800470) variant is independently associated with susceptibility, laboratory activity, and TGF-β1 in patients with systemic lupus erythematosus. Autoimmunity. 2021 Dec; 54 (8): 569–575. doi: 10.1080/08916934.2021.1975680.
33. Juarez I, Gutierrez A, Vaquero-Yuste C, Molanes-López EM, López A, Lasa I et al. TGFB1 polymorphisms and TGF-β1 plasma levels identify gastric adenocarcinoma patients with lower survival rate and disseminated disease. J Cell Mol Med. 2021 Jan; 25 (2): 774–783. doi: 10.1111/jcmm.16131.
34. Iriyoda TMV, Flauzino T, Costa NT, Lozovoy MAB, Reiche EMV, Simão ANC. TGFB1 (rs1800470 and rs1800469) variants are independently associated with disease activity and autoantibodies in rheumatoid arthritis patients. Clin Exp Med. 2022 Feb; 22 (1): 37–45. doi: 10.1007/s10238-021-00725-9.
Review
For citations:
Kurabekova R.M., Tsirulnikova O.M., Gichkun O.E., Pashkova I.E., Shevchenko O.P. Association of plasma TGF-β1 levels with polymorphic loci and TGFB1 haplotypes rs1800469 and rs1800470 in pediatric liver transplant recipients. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):179-188. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-179-188