Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Современные экстракорпоральные системы вспомогательного кровообращения (центробежные насосы и оксигенаторы). Обзор литературы

https://doi.org/10.15825/1995-1191-2024-4-149-156

Аннотация

Более 70 лет непрерывно развиваются и совершенствуются устройства кратковременной механической поддержки кровообращения, а также методы и навыки их имплантаций. Глубокое изучение каждого из существующих устройств важно не только для оптимизации результатов лечения пациентов, но и для создания более безопасного, эффективного, малогабаритного нового устройства. В данном обзоре рассмотрены существующие устройства временной поддержки кровообращения, а также оксигенаторы, которыми дополняют систему с целью протектирования функции легких. Приведены их основные технические характеристики, а также особенности применения в клинической практике. На основе литературного анализа были сформулированы основные направления развития технологии ЭКМО в нашей стране.

Об авторах

О. Ю. Есипова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Есипова Ольга Юрьевна

123182, Москва, ул. Щукинская, д. 1

Тел. (925) 190-96-14



А. П. Кулешов
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



В. К. Богданов
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



А. С. Есипов
ФГБУ «Национальный медицинский исследовательский центр высоких медицинских технологий имени А.А. Вишневского» Минобороны России
Россия

Красногорск



Н. В. Грудинин
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



Список литературы

1. Mugford M, Elbourne D, Field D. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst Rev. 2008; 3:CD001340.

2. Sievert AN, Shackelford AG, McCall MM. Trends and emerging technologies in extracorporeal life support: results of the 2006 ECLS survey. J Extra Corpor Technol. 2009; 41: 73–78.

3. Fleming GM, Gurney JG, Donohue JE, et al. Mechanical component failures in 28 171 neonatal and pediatric extracorporeal membrane oxygenation courses from 1987 to 2006. Pediatr Crit Care Med. 2009; 10: 439–444.

4. Готье СВ, Попцов ВН, Спирина ЕА. Экстракорпоральная мембранная оксигенация в кардиохирургии и трансплантологии. М.: Триада (2013), 272 с.

5. Protti I, van Steenwijk MPJ, Meani P, Fresiello L, Meuwese CL, Donker DW. Left Ventricular Unloading in Extracorporeal Membrane Oxygenation: A Clinical Perspective Derived from Basic Cardiovascular Physiology. Curr Cardiol Rep. 2024; 26(7): 661–667.

6. Turbendian HK, Gebhardt J, Scherkenbach P, Zawadzki MJ, Shillingford M. A novel approach to delivery of extracorporeal support using a modified continuous flow ventricular assist device in a mid-volume congenital heart program. Artif Organs. 2021; 45(1): 55–62.

7. Abbasi A, Devers C, Sodha NR, Ventetuolo CE. Extracorporeal Life Support in Adults with Acute Respiratory Failure: Current Evidence-Based Practices. R I Med J. 2019; 102(10): 39–42.

8. Madurka I, Bartók T, Kormosói-Tóth K, Schönauer N, Elek J, Bobek I. Successful extracorporeal membrane oxygenation (ECMO) treatment in Legionella pneumonia. Orv Hetil. 2019; 160(6): 235–240.

9. Talor J, Yee S, Rider A, et al. Comparison of perfusion quality in hollow-fiber membrane oxygenators for neonatal extracorporeal life support. Artif Organs. 2010; 34: 110–116.

10. Vasavada R, Khan S, Qiu F, et al. Impact of oxygenator selection on hemodynamic energy indicators under pulsatile and non-pulsatile flow in a neonatal ECLS model. Artif Organs. 2011; 31: 101–107.

11. Qiu F, Khan S, Talor J, et al Evaluation of two pediatric polymethyl pentene membrane oxygenators with pulsatile and nonpulsatile perfusion. Perfusion. 2011; 26: 229–238.

12. Thiara AP, Hoel TN, Kristiansen F, et al. Evaluation of oxygenators and centrifugal pumps for long-term pediatric extracorporeal membrane oxygenation. Perfusion. 2007; 22: 323–326.

13. Shen I, Levy FH, Vocelka CR, et al. Effect of extracorporeal membrane oxygenation on left ventricular function of swine. Ann Thorac Surg. 2001; 71: 862–867.

14. Watterson PA, Woodard JC, Ramsden VC, et al. VentrAssist hydrodynamically suspended, open, centrifugal blood pump. Artif Organs. 2000; 24: 475–477.

15. Lawson DS, Ing R, Cheifetz IM, et al. Hemolytic characteristics of three commercially available centrifugal blood pumps. PediatrCrit Care Med. 2005; №6: 573–577.

16. Han D, Leibowitz JL, Han L, Wang S, He G, Griffith BP, Wu ZJ. Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag. Med Nov Technol Devices. 2022; 15:100153.

17. Horton S, Thuys C, Bennett M, et al. Experience with the Jostra Rotaflow and QuadroxD oxygenator for ECMO. Perfusion. 2004; 19: 17–23.

18. Ibrahim AE, Duncan BW, Blume ED, et al. Long-term follow-up of pediatric cardiac patients requiring mechanical circulatory support. Ann Thorac Surg. 2000; 69(1): 186–192.

19. Wang S, Caneo LF, Jatene MB, Jatene FB, Cestari IA, Kunselman AR, Ündar A. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach. Artif Organs. 2017; 41(9): 865–874.

20. Reser D, Seifert B, Klein M, Dreizler T, Hasenclever P, Falk V, Starck C. Retrospective analysis of outcome data with regards to the use of Phisio®-, Bioline®- or Softline®-coated cardiopulmonary bypass circuits in cardiac surgery. Perfusion. 2012; 27(6): 530–534.

21. Lunz D, Philipp A, Judemann K, Amann M, et al. First experience with the deltastream(R) DP3 in venovenous extracorporeal membrane oxygenation and air-supported inter-hospital transport. Interact Cardiovasc Thorac Surg. 2013; 17(5): 773–777.

22. Heinsar S, Bartnikowski N, Hartel G, Farah SM, et al. A comprehensive evaluation of hemodynamic energy production and circuit loss using four different ECMO arterial cannulae. Artif Organs. 2023; 47(7): 1122–1132.

23. Wang S, Force M, Moroi MK, Patel S, et al. Effects of Pulsatile Control Algorithms for Diagonal Pump on Hemodynamic Performance and Hemolysis. Artif Organs. 2019; 43(1): 60–75.

24. Okan Y, Sertac H, Erkut O, Taner K, Selen OI, et al. Initial Clinical Experiences With Novel Diagonal ECLS System in Pediatric Cardiac Patients. Artif Organs. 2017; 41(8): 717–726.

25. Borisenko O, Wylie G, Payne J, Bjessmo S, Smith J, et al. The cost impact of short-term ventricular assist devices and extracorporeal life support systems therapies on the National Health Service in the UK. Interact Cardiovasc Thorac Surg. 2014; 19(1): 41–48.

26. Dasse KA, Gellman B, Kameneva MV, Woolley JR, Johnson CA, Gempp T, et al. Assessment of hydraulic performance and biocompatibility of a MagLev centrifugal pump system designed for pediatric cardiac or cardiopulmonary support. ASAIO J. 2007; 53(6): 771–777.

27. Wang S, Sun W, Han D, Clark KP, Griffith BP, Wu ZJ. In vitro study on device-induced damage to blood cellular components and degradation of von Willebrand factor in a CentriMag pump-assisted circulation. Artif Organs. 2024; 48(9): 988–996.

28. Jain M, Gadallah B, Das De S, Mehta V. Implantation of short-term biventricular assist device (BiVAD) using the CentriMag™ system: the Manchester technique. Indian J Thorac Cardiovasc Surg. 2024; 40(4): 521–525.

29. Maul TM, Kocyildirim E, Marks JD, Bengston SG, Olia SE, et al. Pre-clinical Implants of the Levitronix PediVAS® Pediatric Ventricular Assist Device - Strategy for Regulatory Approval. Cardiovasc Eng Technol. 2011; 2(4): 263–275.

30. Wang S, Rider AR, Kunselman AR, Richardson JS, Dasse KA, Undar A. Effects of the pulsatile flow settings on pulsatile waveforms and hemodynamic energy in a PediVAS centrifugal pump. ASAIO J. 2009; 55(3): 271–276.

31. Burda G, Trittenwein H, Carole H, Trittenwein G. Testing of extracorporeal membrane oxygenation circuit related hemolysis using long-term stored packed red cells and fresh frozen plasma. Artif Organs. 2004; 28(5): 496–499.

32. Li P, Mei X, Ge W, Wu T, Zhong M, Huan N, et al. A comprehensive comparison of the in vitro. Front Physiol. 2023; 14: 1136545.

33. Puentener P, Schuck M, Kolar JW. The Influence of Impeller Geometries on Hemolysis in Bearingless Centrifugal Pumps. IEEE Open J Eng Med Biol. 2020; 16(1): 316–0323.

34. Fujiwara T, Nagaoka E, Watanabe T, Miyagi N, Kitao T, Sakota D, et al. New generation extracorporeal membrane oxygenation with MedTech Mag-Lev, a single-use, magnetically levitated, centrifugal blood pump: preclinical evaluation in calves. Artif Organs. 2013; 37(5): 447–456.

35. Hijikata W, Sobajima H, Shinshi T, Nagamine Y, et al. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller. Artif Organs. 2010; 34(8): 669–677.

36. Medtronic ECLS pumps [Internet]; http://www.medtronic.com/us-en/healthcare-professionals/therapies-procedures/cardiovascular/perfusion.html [updated 2024 August 15].

37. Revolution Livanova [Internet]; http://www.livanova.sorin.com/products/cardiac-surgery/perfusion/centrifugal-bloodpump/revolution [updated 2024 August 15].

38. Glass K, Trivedi P, Wang S, Woitas K, Kunselman AR, Ündar A. Building a Better Neonatal Extracorporeal Life Support Circuit: Comparison of Hemodynamic Performance and Gaseous Microemboli Handling in Different Pump and Oxygenator Technologies. Artif Organs. 2017; 41(4): 392–400.

39. Lemloh L, Bo B, Ploeger H, Dolscheid-Pommerich R, Mueller A, Kipfmueller F. Hemolysis during Venovenous Extracorporeal Membrane Oxygenation in Neonates with Congenital Diaphragmatic Hernia: A Prospective Observational Study. J Pediatr. 2023; 263: 113713.

40. Wang S, Moroi MK, Force M, Kunselman AR, Ündar A. Impact of Heart Rate on Pulsatile Hemodynamic Performance in a Neonatal ECG-Synchronized ECLS System. Artif Organs. 2019; 43(1): 81–89.

41. Modi SP, D'Aloiso B, Palmer A, Smith S, et al. Comparative analysis of oxygenator dysfunction in polymethylpentene oxygenators: A pilot study. Perfusion. 2024; 1: 2676591241268402.

42. Condello I, Lorusso R, Nasso G, Speziale G. Long-term ECMO, efficiency and performance of EUROSETS adult A.L.ONE ECMO oxygenator. J Cardiothorac Surg. 2023; 18(1): 95.

43. Odish MF, Garimella PS, Crisostomo H, Yi C, et al. Using Cardiohelp, Quadrox, and Nautilus Extracorporeal Membrane Oxygenators as Vascular Access for Hemodialysis, Continuous Renal Replacement Therapy, and Plasmapheresis: A Brief Technical Report. ASAIO J. 2023; 69(11): e455–e459.

44. Fukuda M. Evolutions of extracorporeal membrane oxygenator (ECMO): perspectives for advanced hollow fiber membrane. J Artif Organs. 2024; 27(1): 1–6.

45. Iwahashi H, Yuri K, Nosé Y. Development of the oxygenator: past, present, and future. J Artif Organs. 2004; 7(3): 111–120.


Рецензия

Для цитирования:


Есипова О.Ю., Кулешов А.П., Богданов В.К., Есипов А.С., Грудинин Н.В. Современные экстракорпоральные системы вспомогательного кровообращения (центробежные насосы и оксигенаторы). Обзор литературы. Вестник трансплантологии и искусственных органов. 2024;26(4):149-156. https://doi.org/10.15825/1995-1191-2024-4-149-156

For citation:


Esipova O.Yu., Kuleshov A.P., Bogdanov V.K., Esipov A.S., Grudinin N.V. Modern extracorporeal circulatory support systems (centrifugal pumps and oxygenators). Literature review. Russian Journal of Transplantology and Artificial Organs. 2024;26(4):149-156. https://doi.org/10.15825/1995-1191-2024-4-149-156

Просмотров: 210


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)