Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Биодеградируемые изделия из натурального шелка для регенеративной медицины

https://doi.org/10.15825/1995-1191-2024-4-157-165

Аннотация

Шелк благодаря своим уникальным физико-химическим и биологическим свойствам становится одним из ключевых материалов в современной биоинженерии и медицине. В данной обзорной статье обсуждаются основные компоненты шелка – фиброин и серицин, их структура и функциональные характеристики, а также их значение для создания биосовместимых и биодеградируемых материалов. Рассматриваются современные подходы к модификации шелка, включая физическую, химическую и генетическую модификацию, с целью улучшения его механических и биологических свойств. Особое внимание уделено применению шелка в тканевой инженерии, разработке медицинских имплантатов, систем контролируемой доставки лекарств и биосенсоров. В заключение обсуждаются перспективы дальнейших исследований шелка, направленных на создание инновационных биоматериалов для медицинских применений.

Об авторах

Е. И. Подболотова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



О. И. Агапова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Агапова Ольга Игоревна

123182, Москва, ул. Пехотная, д. 5.

Тел. (499) 190-66-19



Список литературы

1. Амирова ТШ, Ибрагимов AA, Назаров OM, Саминов ХН. Анализ структуры серицина и фиброина шелка. Universum: химия и биология. 2024; 1 (6): 28–31.

2. Cheng Y, Koh LD, Li D, Ji B, Han MY, Zhang YW. On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J R Soc Interface. 2014 Apr 30; 11 (96): 20140305. doi: 10.1098/rsif.2014.0305.

3. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins. 2001 Aug 1; 44 (2): 119–122. doi: 10.1002/prot.1078. PMID: 11391774.

4. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al. Silk-based biomaterials. Biomaterials. 2003 Feb; 24 (3): 401–416. doi: 10.1016/s01429612(02)00353-8. PMID: 12423595.

5. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007; 32 (8–9): 991–1007. doi: 10.1016/j.progpolymsci.2007.05.013. PMID: 19543442.

6. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011 Sep 22; 6 (10): 1612–1631. doi: 10.1038/nprot.2011.379. PMID: 21959241.

7. Lee HG, Jang MJ, Park BD, Um IC. Structural characteristics and properties of redissolved silk sericin. Polymers (Basel). 2023 Aug 14; 15 (16): 3405. doi: 10.3390/polym15163405. PMID: 37631462.

8. Kunz RI, Brancalhão RM, Ribeiro LF, Natali MR. Silkworm sericin: properties and biomedical applications. Biomed Res Int. 2016; 2016: 8175701. doi: 10.1155/2016/8175701.

9. Du S, Zhang J, Zhou WT, Li QX, Greene GW, Zhu HJ et al. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. J Colloid Interface Sci. 2016 Sep 15; 478: 316–323. doi: 10.1016/j.jcis.2016.06.030. Epub 2016 Jun 10. PMID: 27314644.

10. Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DN et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel). 2019 Nov 24; 11 (12): 1933. doi: 10.3390/polym11121933. PMID: 31771251.

11. Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y et al. Silk sericin-based materials for biomedical applications. Biomaterials. 2022 Aug; 287: 121638. doi: 10.1016/j.biomaterials.2022.121638. Epub 2022 Jun 17. PMID: 35921729.

12. Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P. Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. ScientificWorldJournal. 2012; 2012: 697201. doi: 10.1100/2012/697201. Epub 2012 May 22. PMID: 22701367.

13. Ode Boni BO, Bakadia BM, Osi AR, Shi Z, Chen H, Gauthier M et al. Immune Response to Silk Sericin-Fibroin Composites: Potential immunogenic elements and alternatives for immunomodulation. Macromol Biosci. 2022 Jan; 22 (1): e2100292. doi: 10.1002/mabi.202100292. Epub 2021 Nov 10. PMID: 34669251.

14. Madden PW, Lai JN, George KA, Giovenco T, Harkin DG, Chirila TV. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials. 2011 Jun; 32 (17): 4076–4084. doi: 10.1016/j.biomaterials.2010.12.034. Epub 2011 Mar 21. PMID: 21427010.

15. Liu J, Lawrence B, Liu A, Schwab I, Oliveira L, Rosenblatt M. Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest Ophthalmol Vis Sci. 2012; 53 (7): 4130–4138. doi: 10.1167/iovs.129876.

16. Li G, Sun S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules. 2022 Apr 25; 27 (9): 2757. doi: 10.3390/molecules27092757. PMID: 35566110.

17. Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y et al. Degradation mechanism and control of silk fibroin. Biomacromolecules. 2011 Apr 11; 12 (4): 1080–1086. doi: 10.1021/bm101422j. Epub 2011 Feb 25. PMID: 21361368.

18. Сафонова ЛА, Боброва ММ, Ефимов АЕ, Агапова ОИ, Агапов ИИ. Биодеградируемые материалы на основе тканей из натурального шелка как перспективные скаффолды для тканевой инженерии и регенеративной медицины. Вестник трансплантологии и искусственных органов. 2020; 22 (4): 105–114.

19. Котлярова МС, Архипова АЮ, Мойсенович АМ, Куликов ДА, Куликов АВ, Коньков АС и др. Биорезорбируемые скаффолды на основе фиброина для регенерации костной ткани. Вестник Московского университета. Серия 16. Биология. 2017; 4: 222–228.

20. Midha S, Ghosh S. Silk-based bioinks for 3D bioprinting. Regenerative Medicine: Laboratory to Clinic. 2017: 259–276. doi: 10.1007/978-981-10-3701-6_15.

21. Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent developments of silk-based scaffolds for tissue engineering and regenerative medicine applications: A special focus on the advancement of 3D printing. Biomimetics. 2023 Jan 16; 8 (1): 16. doi: 10.3390/biomimetics8010016.

22. Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial Surgical Silk Sutures Using a high-performance slow-release carrier coating system. ACS Appl Mater Interfaces. 2015 Oct 14; 7 (40): 22394–22403. doi: 10.1021/acsami.5b06239. Epub 2015 Sep 29. PMID: 26378964.

23. Foppiani JA, Taritsa IC, Foster L, Patel A, Hernandez Alvarez A, Lee D et al. Redefining surgical materials: applications of silk fibroin in osteofixation and fracture repair. Biomimetics (Basel). 2024 May 11; 9 (5): 286. doi: 10.3390/biomimetics9050286. PMID: 38786496.

24. Ding Z, Cheng W, Mia MS, Lu Q. Silk biomaterials for bone tissue engineering. Macromol Biosci. 2021 Aug; 21 (8): e2100153. doi: 10.1002/mabi.202.

25. Settembrini A, Buongiovanni G, Settembrini P, Alessandrino A, Freddi G, Vettor G, Martelli E. In vivo evaluation of silk fibroin small-diameter vascular grafts: state of art of preclinical studies and animal models. Front Surg. 2023 May 26; 10: 1090565. doi: 10.3389/fsurg.2023.1090565.

26. Liu Z, Li G, Zheng Z, Li Y, Han Y, Kaplan DL et al. Silk fibroin-based woven endovascular prosthesis with heparin surface modification. J Mater Sci Mater Med. 2018 Apr 12; 29 (4): 46. doi: 10.1007/s10856-018-6055-3. PMID: 29651619.

27. Tanaka T, Abe Y, Cheng CJ, Tanaka R, Naito A, Asakura T. Development of small-diameter elastin-silk fibroin vascular grafts. Front Bioeng Biotechnol. 2021 Jan 14; 8: 622220. doi: 10.3389/fbioe.2020.622220. PMID: 33585421.

28. Millesi F, Weiss T, Radtke C. Silk biomaterials in peripheral nerve tissue engineering. Advances in Silk Biomaterials. 2020: 107–128. doi: 10.1007/978-3-030-062170_5-1.

29. Gu X, Chen X, Tang X, Zhou Z, Huang T, Yang Y et al. Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration. Nanotechnology Reviews. 2021; 10: 10–19. doi: 10.1515/ntrev-2021-0002.

30. Zhang F, Liu R, Zuo B, Qin J. Electrospun silk fibroin nanofiber tubes for peripheral nerve regeneration. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). 2010: 1–4. doi: 10.1109/ICBBE.2010.5514821.

31. Jiang JP, Liu XY, Zhao F, Zhu X, Li XY, Niu XG et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen Res. 2020 May; 15 (5): 959–968. doi: 10.4103/16735374.268974. Erratum in: Neural Regen Res. 2020 Oct; 15 (10): 1961. doi: 10.4103/1673-5374.280332. PMID: 31719263.

32. Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV et al. Cortical reshaping and functional recovery induced by silk fibroin hydrogels-encapsulated stem cells implanted in stroke animals. Front Cell Neurosci. 2018 Sep 6; 12: 296. doi: 10.3389/fncel.2018.00296. PMID: 30237762.

33. Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv. 2011 Jun; 8 (6): 797–811. doi: 10.1517/17425247.2011.568936. Epub 2011 Apr 1. PMID: 21453189.

34. Rajendra P, Nidamanuri B, Balan A, Venkatachalam S, Jawahar N. A review on structure, preparation and applications of silk fibroin-based nano-drug delivery systems. J Nanoparticle Res. 2022; 24: 55. doi: 10.1007/s11051022-05526-z.

35. Kucharczyk K, Florczak A, Deptuch T, Penderecka K, Jastrzebska K, Mackiewicz A et al. Drug affinity and targeted delivery: double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells. J Nanobiotechnology. 2020 Mar 30; 18 (1): 56. doi: 10.1186/s12951-020-00609-2. PMID: 32228620.

36. Liu Y, Lv Z, Zhang C, Zhu X, Shi T, Zhong S et al. Preparation and immunogenicity of silk fibroin/chitosan microspheres for DNA vaccine delivery against infectious bursal disease virus. Shengwu Gongcheng Xuebao / Chinese Journal of Biotechnology. 2014; 30 (3): 393–403. doi: 10.13345/j.cjb.130344.

37. Stinson JA, Raja WK, Lee S, Kim HB, Diwan I, Tutunjian S et al. Silk fibroin microneedles for transdermal vaccine delivery. ACS Biomater Sci Eng. 2017 Mar 13; 3 (3): 360–369. doi: 10.1021/acsbiomaterials.6b00515. Epub 2017 Jan 17. PMID: 33465933.

38. Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol. 2023 Jan 1; 224: 422–436. doi: 10.1016/j.ijbiomac.2022.10.134. Epub 2022 Oct 18. PMID: 36270404.

39. Zhao L, Wen Z, Jiang F, Zheng Z, Lu S. Silk/polyols/ GOD microneedle based electrochemical biosensor for continuous glucose monitoring. RSC Adv. 2020 Feb 10; 10 (11): 6163–6171. doi: 10.1039/c9ra10374k. PMID: 35496012.

40. Márquez A, Santiago S, Dos Santos MV, Aznar-Cervantes SD, Domínguez C, Omenetto FG et al. Reusable colorimetric biosensors on sustainable silk-based platforms. ACS Appl Bio Mater. 2024 Feb 19; 7 (2): 853–862. doi: 10.1021/acsabm.3c00872. Epub 2024 Jan 25. PMID: 38270977.

41. Dai X, Ye X, Shi L, Yu S, Wang X, Zhong B. High mechanical property silk produced by transgenic silkworms expressing the Drosophila Dumpy. Front Bioeng Biotechnol. 2024 Feb 12; 12: 1359587. doi: 10.3389/fbioe.2024.1359587. PMID: 38410165.

42. Мойсенович ММ, Архипова АЮ, Орлова АА, Друцкая МС, Волкова СВ, Захаров СЕ и др. Композитные матриксы на основе фиброина шелка, желатина и гидроксиапатита для регенеративной медицины и культивирования клеток в трехмерной культуре. Acta Naturae. 2014; 6 (1): 103–109

43. Li F, Zheng Z, Luo T, Liu J, Wu J, Wang X et al. Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility. J Mater Sci. 2016; 51: 7121–7131. doi: 10.1007/s10853-0159613-9.

44. Li ZH, Ji S, Wang YZ, Shen XC, Liang H. Silk fibroinbased scaffolds for tissue engineering. Front Mater Sci. 2013; 7: 217–234. doi: 10.1007/s11706-013-0214-8.

45. Zhao G, Zhang X, Li B, Huang G, Xu F, Zhang X. Solvent-free fabrication of carbon nanotube/silk fibroin electrospun matrices for enhancing cardiomyocyte functionalities. ACS Biomater Sci Eng. 2020 Mar 9; 6 (3): 1630–1640. doi: 10.1021/acsbiomaterials.9b01682. Epub 2020 Feb 3. PMID: 33455382.

46. Liu X, Xia Q, Zhou J, Zhang Y, Ju H, Deng Z. Chemical modification of silk fibroin through serine amino acid residues. Materials (Basel). 2022 Jun 22; 15 (13): 4399. doi: 10.3390/ma15134399. PMID: 35806524.

47. Ghalei S, Handa H. A review on antibacterial silk fibroin-based biomaterials: current state and prospects. Mater Today Chem. 2022 Mar; 23: 100673. doi: 10.1016/j.mtchem.2021.100673. Epub 2021 Dec 9. PMID: 34901586.

48. Fathi-Achachelouei M, Keskin D, Bat E, Vrana NE, Tezcaner A. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2020 Jul; 108 (5): 2041–2062. doi: 10.1002/jbm.b.34544. Epub 2019 Dec 24. PMID: 31872975.

49. Xiao M, Yao J, Shao Z, Chen X. Silk-based 3D porous scaffolds for tissue engineering. ACS Biomater Sci Eng. 2024 May 13; 10 (5): 2827–2840. doi: 10.1021/acsbiomaterials.4c00373. Epub 2024 May 1. PMID: 38690985.

50. Burger D, Beaumont M, Rosenau T, Tamada Y. Porous silk fibroin/cellulose hydrogels for bone tissue engineering via a novel combined process based on sequential regeneration and porogen leaching. Molecules. 2020 Nov 3; 25 (21): 5097. doi: 10.3390/molecules25215097. PMID: 33153040.

51. Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol. 2024 Apr 25; 12: 1381838. doi: 10.3389/fbioe.2024.1381838.

52. Dai X, Li X, Zhang C, Wang L, Ma C, Yang W, Li M. Acylation modification of Antheraea pernyi silk fibroin using succinic anhydride and its effects on enzymatic degradation behavior. J Chem. 2013. doi: 10.1155/2013/640913.

53. Lu Q, Zhu HS, Zhang CC, Zhang F, Zhang B, Kaplan DL. Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules. 2012; 13: 826–832.

54. Балтаева ММ, Бабаджанова ДД, Эшчанов ХО. Серицин и его значение. Universum: технические науки. 2022; 1 (94): 89–92.

55. Song Y, Hu C, Wang Z, Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience. 2024 Mar 27; 27 (5): 109604. doi: 10.1016/j.isci.2024.109604.

56. Shen X, Shi H, Wei H, Wu B, Xia Q, Yeo J, Huang W. Engineering natural and recombinant silks for sustainable biodevices. Front Chem. 2022; 10: 881028. doi: 10.3389/fchem.2022.881028.

57. Li Z, Jiang Y, Cao G, Li J, Xue R, Gong C. Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep. 2015; 42 (1): 19–25. doi: 10.1007/s11033-014-3735.


Рецензия

Для цитирования:


Подболотова Е.И., Агапова О.И. Биодеградируемые изделия из натурального шелка для регенеративной медицины. Вестник трансплантологии и искусственных органов. 2024;26(4):157-165. https://doi.org/10.15825/1995-1191-2024-4-157-165

For citation:


Podbolotova E.I., Agapova O.I. Biodegradable silk-based products for regenerative medicine. Russian Journal of Transplantology and Artificial Organs. 2024;26(4):157-165. https://doi.org/10.15825/1995-1191-2024-4-157-165

Просмотров: 186


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)