Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Применение аутологичных биоматериалов в комбинации с биосовместимыми матриксами для восстановления дефектов костной ткани (обзор литературы)

https://doi.org/10.15825/1995-1191-2025-2-112-126

Аннотация

Восстановление дефектов костной ткани представляет собой междисциплинарную область исследований, включающую многие аспекты хирургической ортопедии, регенеративной медицины, тканевой инженерии, иммунологии (поиск решения проблемы биосовместимости), материаловедения и технологии матери- алов (аддитивные технологии, пористость и механическая прочность материалов), нанотехнологий с целью создания биосовместимых матриксов, способствующих регенерации кости. В данном обзоре литературы представлена информация о последних достижениях в области инженерии костной ткани с точки зрения методов применения аутологичных биоматериалов в комбинации с биосовместимыми матриксами.

Об авторах

Д. В. Булгин
Национальный исследовательский центр «Курчатовский институт»
Россия

Булгин Дмитрий Викторович

354376, Краснодарский край, Сочи, Адлерский р-н, с. Веселое, ул. Академика Лапина, д. 177



И. С. Базаров
ФГБВОУ ВО «Военно-медицинская академия имени С.М. Кирова» Министерства обороны Российской Федерации
Россия

Базаров Иван Сергеевич

Санкт-Петербург



В. В. Хоминец
ФГБВОУ ВО «Военно-медицинская академия имени С.М. Кирова» Министерства обороны Российской Федерации
Россия

Хоминец Владимир Васильевич

Санкт-Петербург



А. Л. Ковтун
Фонд перспективных исследований
Россия

Ковтун Анатолий Леонидович

Москва



Д. А. Иванов
АНО ОВО «Университет «Сириус»
Россия

Иванов Дмитрий Анатольевич

Краснодарский край, пгт. Сириус



Е. Ю. Радомcкая
Национальный исследовательский центр «Курчатовский институт»
Россия

Радомская Елена Юрьевна

Москва



А. А. Ширяев
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Ширяев Артем Анатольевич

Москва



Д. А. Зайчиков
ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Министерства обороны Российской Федерации
Россия

Зайчиков Денис Александрович

Санкт-Петербург



Список литературы

1. Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res. 2018 May 5; 7 (3): 232–243. doi: 10.1302/2046-3758.73.BJR-2017-0270.R1. PMID: 29922441.

2. Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater. 2019 Dec; 8 (4): 223–237. doi: 10.1007/s40204-019-00125-z. PMID: 31768895.

3. Giannoudis PV, Krettek C, Lowenberg DW, Tosounidis T, Borrelli J Jr. Fracture Healing Adjuncts-The World’s Perspective on What Works. J Orthop Trauma. 2018 Mar; 32 Suppl 1: S43–S47. doi: 10.1097/BOT.0000000000001127. PMID: 29461403.

4. Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol. 2018 Jul 31; 6: 105. doi: 10.3389/fbioe.2018.00105. PMID: 30109228.

5. Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021 Jun; 52 Suppl 2: S18–S22. doi: 10.1016/j.injury.2021.01.043. PMID: 33563416.

6. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019 Apr; 33 (4): 203–213. doi: 10.1097/BOT.0000000000001420.

7. Крюков ЕВ, Брижань ЛК, Хоминец ВВ, Давыдов ДВ, Чирва ЮВ, Севастьянов ВИ и др. Опыт клинического применения тканеинженерных конструкций в лечении протяженных дефектов костной ткани. Гений ортопедии. 2019; 25 (1): 49–57. doi: 10.18019/1028-4427-2019-25-1-49-57.

8. Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F et al. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater. 2023 Jun 27; 14 (7): 341. doi: 10.3390/jfb14070341. PMID: 37504836.

9. Корель АВ, Кузнецов СБ. Тканеинженерные стратегии для восстановления дефектов костной ткани. Современное состояние вопроса. Международный журнал прикладных и фундаментальных исследований. 2019; 4: 228–234.

10. Булгин ДВ, Ковтун АЛ, Решетов ИВ, Радомская ЕЮ. Перспективы создания искусственных тканей и органов человека на основе метода трехмерной биопечати. Вестник трансплантологии и искусственных органов. 2023; 25 (2): 63–81. doi: 10.15825/1995-1191-2023-2-63-81.

11. Kamal M, Gremse F, Rosenhain S, Bartella AK, Hölzle F, Kessler P, Lethaus B. Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens. J Craniofac Surg. 2018 Sep; 29 (6): 1661–1665. doi: 10.1097/SCS.0000000000004586. PMID: 29762319.

12. Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H et al. Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells. 2003; 21 (6): 681–693. doi: 10.1634/stemcells.21-6-681. PMID: 14595128.

13. Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P. Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a Reamer/Irrigator/Aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am. 2012 Dec 5; 94 (23): 2128–2135. doi: 10.2106/JBJS.L.00159. PMID: 23224383.

14. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017 Jun 7; 2 (4): 224–247. doi: 10.1016/j.bioactmat.2017.05.007. PMID: 29744432.

15. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011 May 31; 9: 66. doi: 10.1186/1741- 7015-9-66. PMID: 21627784.

16. Шаповалов ВМ, Губочкин НГ, Микитюк СИ. Формирование кровоснабжаемых костных трансплантатов и их использование для лечения ложных суставов и дефектов костей. Вестник хирургии имени И.И. Грекова. 2013; 172 (4): 063–067. doi: 10.24884/0042-4625-2013-172-4-063-067.

17. Asmus A, Vogel K, Vogel A, Eichenauer F, Kim S, Eisenschenk A. Gefäßgestieltes Beckenkammtransplantat zur Behandlung der Femurkopfnekrose [Pedicled vascularized iliac bone graft for treatment of osteonecrosis of the femoral head]. Oper Orthop Traumatol. 2020 Apr; 32 (2): 127–138. doi: 10.1007/s00064-020-00650-2. PMID: 32052100.

18. Quintero JI, Childs D, Moreno R. The medial femoral condyle free flap: An excellent option for difficult cases: case series. SAGE Open Med Case Rep. 2020 Jun 29; 8: 2050313X20933763. doi: 10.1177/2050313X20933763. PMID: 32647579.

19. Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma. 2010 Mar; 24 Suppl 1: S36–S40. doi: 10.1097/BOT.0b013e3181cec4a1. PMID: 20182233.

20. Petrella G, Tosi D, Pantaleoni F, Adani R. Vascularized bone grafts for post-traumatic defects in the upper extremity. Arch Plast Surg. 2021 Jan; 48 (1): 84–90. doi: 10.5999/aps.2020.00969. PMID: 33503750.

21. Неведров АВ, Шибаев ЕЮ, Каленский ВО, Заднепровский НН, Шишкин ВБ, Шарифуллин ФА и др. Опыт применения васкуляризированных костных трансплантатов для лечения несросшихся переломов и дефектов костей конечностей. Трансплантология. 2019; 11 (1): 9–20. doi: 10.23873/2074-0506-2019-11-1-9-20.

22. Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M et al. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg. 2018 Oct; 44 (5): 649–665. doi: 10.1007/s00068-018-0906-y. PMID: 29352347.

23. Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Kakiuchi Y, Nakano M et al. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells. 2021 Oct 8; 10 (10): 2687. doi: 10.3390/cells10102687. PMID: 34685667.

24. Baron M, Drohat P, Crawford B, Hornicek FJ, Best TM, Kouroupis D. Mesenchymal Stem/Stromal Cells: Immunomodulatory and Bone Regeneration Potential after Tumor Excision in Osteosarcoma Patients. Bioengineering (Basel). 2023 Oct 13; 10 (10): 1187. doi: 10.3390/bioengineering10101187. PMID: 37892917.

25. Mavrogenis AF, Karampikas V, Zikopoulos A, Sioutis S, Mastrokalos D, Koulalis D et al. Orthobiologics: a review. Int Orthop. 2023 Jul; 47 (7): 1645–1662. doi: 10.1007/s00264-023-05803-z. PMID: 37071148.

26. Бочкова ТВ, Ганцев ШХ. Применение аутоплазмы, обогащенной тромбоцитами, в различных областях медицины. Медицинский вестник Башкортостана. 2019; 14 (5): 61–67.

27. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009 Nov; 37 (11): 2259–2272. doi: 10.1177/0363546509349921. PMID: 19875361.

28. Блаженко АН, Родин ИА, Понкина ОН, Муханов МЛ, Самойлова АС, Веревкин АА и др. Влияние A-PRP-терапии на репаративную регенерацию костной ткани при свежих переломах костей конечностей. Инновационная медицина Кубани. 2019; (3): 32–38. doi: 10.35401/2500-0268-2019-15-3-32-38.

29. Bacevich BM, Smith RDJ, Reihl AM, Mazzocca AD, Hutchinson ID. Advances with Platelet-Rich Plasma for Bone Healing. Biologics. 2024 Jan 25; 18: 29–59. doi: 10.2147/BTT.S290341. PMID: 382991.

30. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009 Mar; 27 (3): 158–167. doi: 10.1016/j.tibtech.2008.11.009. PMID: 19187989.

31. Chou TM, Chang HP, Wang JC. Autologous platelet concentrates in maxillofacial regenerative therapy. Kaohsiung J Med Sci. 2020 May; 36 (5): 305–310. doi: 10.1002/kjm2.12192. PMID: 32052598.

32. Shanskii YD, Sergeeva NS, Sviridova IK, Kirakozov MS, Kirsanova VA, Akhmedova SA et al. Human platelet lysate as a promising growth-stimulating additive for culturing of stem cells and other cell types. Bull Exp Biol Med. 2013 Nov; 156 (1): 146–151. doi: 10.1007/s10517-013-2298-7. PMID: 24319712.

33. Шанский ЯД. Лизат тромбоцитов человека как ростовая добавка для культивирования различных типов клеток: дис. … канд. биол. наук. М., 2016; 15.

34. Файн АМ, Ваза АЮ, Гнетецкий СФ, Скуратовская КИ, Бондарев ВБ, Боголюбский ЮА и др. Доступные способы повышения регенераторного потенциала пластического материала в неотложной травматологии. Часть 2. Использование аутологичного тромбоцитарного лизата человека. Трансплантология. 2022; 14 (2): 184–194. doi: 10.23873/2074-0506-2022-14-2-184-194.

35. Da Fonseca L, Santos GS, Huber SC, Setti TM, Setti T, Lana JF. Human platelet lysate – A potent (and overlooked) orthobiologic. J Clin Orthop Trauma. 2021 Jul 28; 21: 101534. doi: 10.1016/j.jcot.2021.101534. PMID: 34386346.

36. Everts PA, Hoffmann J, Weibrich G, Mahoney CB, Schönberger JP, van Zundert A, Knape JT. Differences in platelet growth factor release and leucocyte kinetics during autologous platelet gel formation. Transfus Med. 2006 Oct; 16 (5): 363–368. doi: 10.1111/j.1365-3148.2006.00708.x. PMID: 16999760.

37. Everts PA, Hoogbergen MM, Weber TA, Devilee RJ, van Monftort G, de Hingh IH. Is the use of autologous platelet-rich plasma gels in gynecologic, cardiac, and general, reconstructive surgery beneficial? Curr Pharm Biotechnol. 2012 Jun; 13 (7): 1163–1172. doi: 10.2174/138920112800624346. PMID: 21740375.

38. Yuan T, Guo SC, Han P, Zhang CQ, Zeng BF. Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol. 2012 Jun; 13 (7): 1173–1184. doi: 10.2174/138920112800624445. PMID: 21740374.

39. Kobayashi Y, Saita Y, Nishio H, Ikeda H, Takazawa Y, Nagao M et al. Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci. 2016 Sep; 21 (5): 683–689. doi: 10.1016/j.jos.2016.07.009. PMID: 27503185.

40. Bielecki T, Dohan Ehrenfest DM, Everts PA, Wiczkowski A. The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: new perspectives. Curr Pharm Biotechnol. 2012 Jun; 13 (7): 1153–1162. doi: 10.2174/138920112800624373. PMID: 21740376.

41. Yin WJ, Xu HT, Sheng JG, An ZQ, Guo SC, Xie XT, Zhang CQ. Advantages of Pure Platelet-Rich Plasma Compared with Leukocyte- and Platelet-Rich Plasma in Treating Rabbit Knee Osteoarthritis. Med Sci Monit. 2016 Apr 17; 22: 1280–1290. doi: 10.12659/msm.898218. PMID: 27086145.

42. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a secondgeneration platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Mar; 101 (3): e37–e44. doi: 10.1016/j.tripleo.2005.07.008. PMID: 16504849.

43. De Lima Barbosa R, Stellet Lourenço E, de Azevedo dos Santos JV, Rodrigues Santiago Rocha N, Mourão CF, Alves GG. The Effects of Platelet-Rich Fibrin in the Behavior of Mineralizing Cells Related to Bone Tissue Regeneration – A Scoping Review of In Vitro Evidence. J Funct Biomater. 2023 Oct 9; 14 (10): 503. doi: 10.3390/jfb14100503.

44. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018 Jan; 29 (1): 48–55. doi: 10.1080/09537104.2017.1293807. PMID: 28351189.

45. Rochira A, Siculella L, Damiano F, Palermo A, Ferrante F, Carluccio MA et al. Concentrated Growth Factors (CGF) Induce Osteogenic Differentiation in Human Bone Marrow Stem Cells. Biology (Basel). 2020 Oct 30; 9 (11): 370. doi: 10.3390/biology9110370. PMID: 33143015.

46. Khorshidi H, Raoofi S, Bagheri R, Banihashemi H. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes. Int J Dent. 2016; 2016: 1849207. doi: 10.1155/2016/1849207. PMID: 26880919.

47. Yu P, Zhai Z, Jin X, Yang X, Qi Z. Clinical Application of Platelet-Rich Fibrin in Plastic and Reconstructive Surgery: A Systematic Review. Aesthetic Plast Surg. 2018 Apr; 42 (2): 511–519. doi: 10.1007/s00266-018-1087-0. PMID: 29396591.

48. Castro AB, Meschi N, Temmerman A, Pinto N, Lambrechts P, Teughels W, Quirynen M. Regenerative potential of leucocyte- and platelet-rich fibrin. Part B: sinus floor elevation, alveolar ridge preservation and implant therapy. A systematic review. J Clin Periodontol. 2017 Feb; 44 (2): 225–234. doi: 10.1111/jcpe.12658. PMID: 27891638.

49. Jia K, You J, Zhu Y, Li M, Chen S, Ren S et al. Plateletrich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization. Front Bioeng Biotechnol. 2024 Apr 16; 12: 1286035. doi: 10.3389/fbioe.2024.1286035. PMID: 38689760.

50. Al-Ghadban S, Artiles M, Bunnell BA. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol. 2022 Jan 13; 9: 837464. doi: 10.3389/fbioe.2021.837464. PMID: 35096804.

51. Gorkun AA, Revokatova DP, Zurina IM, Nikishin DA, Bikmulina PY, Timashev PS et al. The Duo of Osteogenic and Angiogenic Differentiation in ADSC-Derived Spheroids. Front Cell Dev Biol. 2021 Apr 9; 9: 572727. doi: 10.3389/fcell.2021.572727. PMID: 33898413.

52. Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012 May; 30 (5): 804–810. doi: 10.1002/stem.1076. PMID: 22415904.

53. Paduano F, Marrelli M, Amantea M, Rengo C, Rengo S, Goldberg M et al. Adipose Tissue as a Strategic Source of Mesenchymal Stem Cells in Bone Regeneration: A Topical Review on the Most Promising Craniomaxillofacial Applications. Int J Mol Sci. 2017 Oct 13; 18 (10): 2140. doi: 10.3390/ijms18102140. PMID: 29027958.

54. Storti G, Scioli MG, Kim BS, Orlandi A, Cervelli V. Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. StemCellsInt. 2019 Nov 6; 2019: 3673857. doi: 10.1155/2019/3673857. PMID: 31781238.

55. Labusca L. Adipose tissue in bone regeneration – stem cell source and beyond. World J Stem Cells. 2022 Jun 26; 14 (6): 372–392. doi: 10.4252/wjsc.v14.i6.372. PMID: 35949397.

56. Ferguson JC, Tangl S, Barnewitz D, Genzel A, Heimel P, Hruschka V et al. A large animal model for standardized testing of bone regeneration strategies. BMC Vet Res. 2018 Nov 6; 14 (1): 330. doi: 10.1186/s12917-018-1648-0. PMID: 30400796.

57. Baba S, Inoue T, Hashimoto Y, Kimura D, Ueda M, Sakai K et al. Effectiveness of scaffolds with pre-seeded mesenchymal stem cells in bone regeneration – Assessment of osteogenic ability of scaffolds implanted under the periosteum of the cranial bone of rats. Dent Mater J. 2010 Nov;29(6): 673–681. doi: 10.4012/dmj.2009-123. PMID: 21099156.

58. He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One. 2014 Aug 1; 9 (8): e104061. doi: 10.1371/journal.pone.0104061. PMID: 25084008.

59. Del Rosario C, Rodríguez-Évora M, Reyes R, Delgado A, Évora C. BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous β-TCP scaffold for critical-size bone defect repair in rats. Biomed Mater. 2015 Jul 23; 10 (4): 045008. doi: 10.1088/1748-6041/10/4/045008. PMID: 26201844.

60. Kong Y, Zhao Y, Li D, Shen H, Yan M. Dual delivery of encapsulated BM-MSCs and BMP-2 improves osteogenic differentiation and new bone formation. J Biomed Mater Res A. 2019 Oct; 107 (10): 2282–2295. doi: 10.1002/jbm.a.36737. PMID: 31152570.

61. Cheng G, Ma X, Li J, Cheng Y, Cao Y, Wang Z et al. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Int J Pharm. 2018 Aug 25; 547 (1–2): 656–666. doi: 10.1016/j.ijpharm.2018.06.020. PMID: 29886100.

62. Li X, Zhang R, Tan X, Li B, Liu Y, Wang X. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration. Int J Med Sci. 2019 Jun 10; 16 (7): 1007–1017. doi: 10.7150/ijms.31966. PMID: 31341414.

63. Hara K, Hellem E, Yamada S, Sariibrahimoglu K, Mølster A, Gjerdet NR et al. Efficacy of treating segmental bone defects through endochondral ossification: 3D printed designs and bone metabolic activities. Mater Today Bio. 2022 Mar 7; 14: 100237. doi: 10.1016/j.mtbio.2022.100237. PMID: 35280332.

64. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM et al. Repair of segmental load-bearing bone defect by autologous mesenchymal stem cells and plasma-derived fibrin impregnated ceramic block results in early recovery of limb function. Biomed Res Int. 2014; 2014: 345910. doi: 10.1155/2014/345910. PMID: 25165699.

65. Wong CC, Yeh YY, Chen CH, Manga YB, Jheng PR, Lu CX, Chuang EY. Effectiveness of treating segmental bone defects with a synergistic co-delivery approach with platelet-rich fibrin and tricalcium phosphate. Mater Sci Eng C Mater Biol Appl. 2021 Oct; 129: 112364. doi: 10.1016/j.msec.2021.112364. PMID: 34579883.

66. Song Y, Lin K, He S, Wang C, Zhang S, Li D et al. Nanobiphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via lowtemperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine. 2018 Jan 25; 13: 505–523. doi: 10.2147/IJN.S152105. PMID: 29416332.

67. Liu Z, Ge Y, Zhang L, Wang Y, Guo C, Feng K et al. The effect of induced membranes combined with enhanced bone marrow and 3D PLA-HA on repairing long bone defects in vivo. J Tissue Eng Regen Med. 2020 Oct; 14 (10): 1403–1414. doi: 10.1002/term.3106. Epub 2020 Aug 2. PMID: 32666697.

68. Berner A, Henkel J, Woodruff MA, Steck R, Nerlich M, Schuetz MA, Hutmacher DW. Delayed minimally invasive injection of allogenic bone marrow stromal cell sheets regenerates large bone defects in an ovine preclinical animal model. Stem Cells Transl Med. 2015 May; 4 (5): 503–512. doi: 10.5966/sctm.2014-0244. PMID: 25834121.

69. Kengelbach-Weigand A, Thielen C, Bäuerle T, Götzl R, Gerber T, Körner C et al. Personalized medicine for reconstruction of critical-size bone defects – a translational approach with customizable vascularized bone tissue. NPJ Regen Med. 2021 Aug 19; 6 (1): 49. doi: 10.1038/s41536-021-00158-8. PMID: 34413320.

70. Smith JO, Tayton ER, Khan F, Aarvold A, Cook RB, Goodship A et al. Large animal in vivo evaluation of a binary blend polymer scaffold for skeletal tissue-engineering strategies; translational issues. J Tissue Eng Regen Med. 2017 Apr; 11 (4): 1065–1076. doi: 10.1002/term.2007. PMID: 25690518.

71. Black C, Kanczler JM, de Andrés MC, White LJ, Savi FM, Bas O et al. Characterisation and evaluation of the regenerative capacity of Stro-4+ enriched bone marrow mesenchymal stromal cells using bovine extracellular matrix hydrogel and a novel biocompatible melt electro-written medical-grade polycaprolactone scaffold. Biomaterials. 2020 Jul; 247: 119998. doi: 10.1016/j.biomaterials.2020.119998. PMID: 32251928. 127

72. Henkel J, Medeiros Savi F, Berner A, Fountain S, Saifzadeh S, Steck R et al. Scaffold-guided bone regeneration in large volume tibial segmental defects. Bone. 2021 Dec; 153: 116163. doi: 10.1016/j.bone.2021.116163. PMID: 34461285.

73. Witek L, Tian H, Tovar N, Torroni A, Neiva R, Gil LF, Coelho PG. The effect of platelet-rich fibrin exudate addition to porous poly(lactic-co-glycolic acid) scaffold in bone healing: An in vivo study. J Biomed Mater Res B Appl Biomater. 2020 May; 108 (4): 1304–1310. doi: 10.1002/jbm.b.34478. PMID: 31429195.

74. Bastami F, Noori-Kooshki MH, Semyari H, Tabrizi R, Abrishamchian A, Mashhadi-Abbas F et al. Multiwalled carbon nanotube/hydroxyapatite nanocomposite with leukocyte- and platelet-rich fibrin for bone regeneration in sheep model. Oral Maxillofac Surg. 2022 Mar; 26 (1): 63–72. doi: 10.1007/s10006-020-00933-9. PMID: 33852090.

75. Szivek JA, Gonzales DA, Wojtanowski AM, Martinez MA, Smith JL. Mesenchymal stem cell seeded, biomimetic 3D printed scaffolds induce complete bridging of femoral critical sized defects. J Biomed Mater Res B Appl Biomater. 2019 Feb; 107 (2): 242–252. doi: 10.1002/jbm.b.34115. PMID: 29569331.

76. Pappa EI, Barbagianni MS, Georgiou SG, Athanasiou LV, Psalla D, Vekios D et al. The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep. Animals (Basel). 2023 Sep 9; 13 (18): 2871. doi: 10.3390/ani13182871. PMID: 37760271.

77. Chu W, Gan Y, Zhuang Y, Wang X, Zhao J, Tang T, Dai K. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther. 2018 Jun 13; 9 (1): 157. doi: 10.1186/s13287-018-0906-1. PMID: 29895312.

78. Probst FA, Fliefel R, Burian E, Probst M, Eddicks M, Cornelsen M et al. Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate- poly(D,L-lactide-co-glycolide) scaffolds. Sci Rep. 2020 Feb 6; 10 (1): 2062. doi: 10.1038/s41598-020-59038-8. PMID: 32029875.

79. Wong KW, Chen YS, Lin CL. Evaluation optimum ratio of synthetic bone graft material and platelet rich fibrin mixture in a metal 3D printed implant to enhance bone regeneration. J Orthop Surg Res. 2024 May 16; 19 (1): 299. doi: 10.1186/s13018-024-04784-y. PMID: 38755635.

80. Hakimi M, Grassmann JP, Betsch M, Schneppendahl J, Gehrmann S, Hakimi AR et al. The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting. PLoS One. 2014 Jun 20; 9 (6): e100143. doi: 10.1371/journal.pone.0100143. PMID: 24950251.

81. Lin CC, Lin SC, Chiang CC, Chang MC, Lee OK. Reconstruction of Bone Defect Combined with Massive Loss of Periosteum Using Injectable Human Mesenchymal Stem Cells in Biocompatible Ceramic Scaffolds in a Porcine Animal Model. Stem Cells Int. 2019 Nov 23; 2019: 6832952. doi: 10.1155/2019/6832952. PMID: 31871469.

82. Balaguer T, Fellah BH, Boukhechba F, Traverson M, Mouska X, Ambrosetti D et al. Combination of blood and biphasic calcium phosphate microparticles for the reconstruction of large bone defects in dog: A pilot study. J Biomed Mater Res A. 2018 Jul; 106 (7): 1842– 1850. doi: 10.1002/jbm.a.36384. PMID: 29573560.

83. Lee JW, Chu SG, Kim HT, Choi KY, Oh EJ, Shim JH et al. Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects. Polymers (Basel). 2017 Sep 15; 9 (9): 450. doi: 10.3390/polym9090450. PMID: 30965755.

84. Masaoka T, Yoshii T, Yuasa M, Yamada T, Taniyama T, Torigoe I et al. Bone Defect Regeneration by a Combination of a β-Tricalcium Phosphate Scaffold and Bone Marrow Stromal Cells in a Non-Human Primate Model. Open Biomed Eng J. 2016 Mar 18; 10: 2–11. doi: 10.2174/1874120701610010002. PMID: 27073583.

85. Houdebine LM. Transgenic animal models in biomedical research. Methods Mol Biol. 2007; 360: 163–202. doi: 10.1385/1-59745-165-7:163. PMID: 17172731.

86. Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2010 Feb; 16 (1): 123–145. doi: 10.1089/ten.TEB.2009.0658. PMID: 19891542.

87. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004 Jul; 86 (7): 1541–1558. doi: 10.2106/00004623-200407000-00029. PMID: 15252108.

88. Gabriele Sommer N, Hahn D, Okutan B, Marek R, Weinberg AM. Animal Models in Orthopedic Research: The Proper Animal Model to Answer Fundamental Questions on Bone Healing Depending on Pathology and Implant Material [Internet]. Animal Models in Medicine and Biology. IntechOpen; 2020. doi: 10.5772/intechopen.89137.

89. Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res. 2021 Jan; 39 (1): 7–21. doi: 10.1002/jor.24852. PMID: 32910496.

90. Cibelli J, Emborg ME, Prockop DJ, Roberts M, Schatten G, Rao M et al. Strategies for improving animal models for regenerative medicine. Cell Stem Cell. 2013 Mar 7; 12 (3): 271–274. doi: 10.1016/j.stem.2013.01.004. PMID: 23472868.

91. Cardoso MN, Souza AF de, De Zoppa AL do V. Large animals as experimental models of critical size bone defects studies: a protocol for a systematic review. Research, Society and Development. 2023; 12 (5): p.e10912541509. doi: 10.33448/rsd-v12i5.41509.

92. Stamnitz S, Klimczak A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells. 2021 Jul 29; 10 (8): 1925. doi: 10.3390/cells10081925. PMID: 34440694.

93. Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines. 2023 Jan 24; 11 (2): 325. doi: 10.3390/biomedicines11020325. PMID: 36830862.

94. Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004 Dec; 32 (6): 370–373. doi: 10.1016/j.jcms.2004.06.002. PMID: 15555520.

95. Thesleff T, Lehtimäki K, Niskakangas T, Mannerström B, MiettinenS,SuuronenR,ÖhmanJ. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery. 2011 Jun; 68 (6): 1535–1540. doi: 10.1227/NEU.0b013e31820ee24e. PMID: 21336223.

96. Morrison DA, Kop AM, Nilasaroya A, Sturm M, Shaw K, Honeybul S. Cranial reconstruction using allogeneic mesenchymal stromal cells: A phase 1 first-in-human trial. J Tissue Eng Regen Med. 2018 Feb; 12 (2): 341–348. doi: 10.1002/term.2459. PMID: 28488350.

97. Artzi Z, Weinreb M, Carmeli G, Lev-Dor R, Dard M, Nemcovsky CE. Histomorphometric assessment of bone formation in sinus augmentation utilizing a combination of autogenous and hydroxyapatite/biphasic tricalcium phosphate graft materials: at 6 and 9 months in humans. Clin Oral Implants Res. 2008 Jul; 19 (7): 686–692. doi: 10.1111/j.1600-0501.2008.01539.x. PMID: 18492077.

98. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009 Mar; 38 (3): 201–209. doi: 10.1016/j.ijom.2009.01.001. PMID: 19168327.

99. Bulgin D, Hodzic E. Autologous bone marrow-derived mononuclear cells combined with β-TCP for maxillary bone augmentation in implantation procedures. J Craniofac Surg. 2012 Nov; 23 (6): 1728–1732. doi: 10.1097/SCS.0b013e31826cf177. PMID: 23147336.

100. Solakoglu Ö, Götz W, Kiessling MC, Alt C, Schmitz C, Alt EU. Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors: A first-in-human case report and literature review. World J Stem Cells. 2019 Feb 26; 11 (2): 124–146. doi: 10.4252/wjsc.v11.i2.124. PMID: 30842809.

101. Kizu Y, Ishii R, Matsumoto N, Saito I. Retrospective study on the effect of adipose stem cell transplantation on jaw bone regeneration. Int J Implant Dent. 2024 Feb 5; 10 (1): 3. doi: 10.1186/s40729-024-00523-4. PMID: 38315258.

102. Sándor GK. Tissue engineering of bone: Clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg. 2012 Jan; 2 (1): 8–11. doi: 10.4103/2231-0746.95308. PMID: 23483030.

103. Gjerde C, Mustafa K, Hellem S, Rojewski M, Gjengedal H, Yassin MA et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther. 2018 Aug 9; 9 (1): 213. doi: 10.1186/s13287-018-0951-9. PMID: 30092840.

104. Paolantonio M, Di Tullio M, Giraudi M, Romano L, Secondi L, Paolantonio G et al. Periodontal regeneration by leukocyte and platelet-rich fibrin with autogenous bone graft versus enamel matrix derivative with autogenous bone graft in the treatment of periodontal intrabony defects: A randomized non-inferiority trial. J Periodontol. 2020 Dec; 91 (12): 1595–1608. doi: 10.1002/JPER.19-0533. PMID: 32294244.

105. Bodhare GH, Kolte AP, Kolte RA, Shirke PY. Clinical and radiographic evaluation and comparison of bioactive bone alloplast morsels when used alone and in combination with platelet-rich fibrin in the treatment of periodontal intrabony defects-A randomized controlled trial. J Periodontol. 2019 Jun; 90 (6): 584–594. doi: 10.1002/JPER.18-0416. PMID: 30488952.

106. Bulgin D, Irha E, Hodzic E, Nemec B. Autologous bone marrow derived mononuclear cells combined with β-tricalcium phosphate and absorbable atelocollagen for a treatment of aneurysmal bone cyst of the humerus in child. J Biomater Appl. 2013 Sep; 28 (3): 343–353. doi: 10.1177/0885328212451047. PMID: 22693044.

107. Šponer P, Filip S, Kučera T, Brtková J, Urban K, Palička V et al. Utilizing Autologous Multipotent Mesenchymal Stromal Cells and β-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. Biomed Res Int. 2016; 2016: 2076061. doi: 10.1155/2016/2076061. PMID: 27144159.

108. Laubach M, Suresh S, Herath B, Wille ML, Delbrück H, Alabdulrahman H et al. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat. 2022 Jun 16; 34: 73–84. doi: 10.1016/j.jot.2022.04.004. PMID: 35782964.

109. Findeisen S, Gräfe N, Schwilk M, Ferbert T, Helbig L, Haubruck P et al. Use of Autologous Bone Graft with Bioactive Glass as a Bone Substitute in the Treatment of Large-Sized Bone Defects of the Femur and Tibia. J Pers Med. 2023 Nov 24; 13 (12): 1644. doi: 10.3390/jpm13121644. PMID: 38138871.

110. Chu W, Wang X, Gan Y, Zhuang Y, Shi D, Liu F et al. Screen-enrich-combine circulating system to prepare MSC/β-TCP for bone repair in fractures with depressed tibial plateau. Regen Med. 2019 Jun; 14 (6): 555–569. doi: 10.2217/rme-2018-0047. PMID: 31115268.

111. Aoki K, Ideta H, Komatsu Y, Tanaka A, Kito M, Okamoto M et al. Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioengineering (Basel). 2024 Feb 13; 11 (2): 180. doi: 10.3390/bioengineering11020180. PMID: 38391666.

112. Stanciugelu SI, Patrascu JM Jr, Florescu S, Marian C. Sticky Bone as a New Type of Autologous Bone Grafting in Schatzker Type II Tibial Plateau Fracture Case Report. Life (Basel). 2024 Aug 21; 14 (8): 1042. doi: 10.3390/life14081042. PMID: 39202784.

113. Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C et al. Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res. 2011 Feb; 29 (2): 173– 180. doi: 10.1002/jor.21230. PMID: 20740672.

114. Zhuang Y, Gan Y, Shi D, Zhao J, Tang T, Dai K. A novel cytotherapy device for rapid screening, enriching and combining mesenchymal stem cells into a biomaterial for promoting bone regeneration. Sci Rep. 2017 Nov 13; 7 (1): 15463. doi: 10.1038/s41598-017-15451-0.

115. Полушин ЮС. Взрывные поражения (лекция). Вестник анестезиологии и реаниматологии. 2022; 19 (6): 6–17. doi: 10.21292/2078-5658-2022-19-6-6-17.

116. Perez KG, Eskridge SL, Clouser MC, McCabe CT, Galarneau MR. A Focus on Non-Amputation Combat Extremity Injury: 2001–2018. Mil Med. 2022 May 3; 187 (5–6): e638–e643. doi: 10.1093/milmed/usab143. PMID: 33939807.

117. Ramasamy A, Hill AM, Masouros S, Gibb I, Bull AM, Clasper JC. Blast-related fracture patterns: a forensic biomechanical approach. J R Soc Interface. 2011 May 6; 8 (58): 689–698. doi: 10.1098/rsif.2010.0476. PMID: 21123255.

118. Stewart L, Shaikh F, Bradley W, Lu D, Blyth DM, Petfield JL et al. Combat-Related Extremity Wounds: Injury Factors Predicting Early Onset Infections. Mil Med. 2019 Mar 1; 184 (Suppl 1): 83–91. doi: 10.1093/milmed/usy336. PMID: 30901441.

119. Хоминец ВВ, Щукин АВ, Михайлов СВ, Фоос ИВ. Особенности лечения раненых с огнестрельными переломами длинных костей конечностей методом последовательного внутреннего остеосинтеза. Политравма. 2017; 3: 12–22.

120. Селиверстов ПА, Шапкин ЮГ. Применение тактики контроля повреждений при боевых травмах конечностей на передовых этапах медицинской эвакуации в условиях современных войн (обзор литературы). Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2023; (1): 42–52. doi: 10.25016/2541-7487-2023-0-1-42-52.

121. Gubin AV, Borzunov DY, Marchenkova LO, Malkova TA, Smirnova IL. Contribution of G.A. Ilizarov to bone reconstruction: historical achievements and state of the art. Strategies Trauma Limb Reconstr. 2016 Nov; 11 (3): 145–152. doi: 10.1007/s11751-016-0261-7. PMID: 27432154.

122. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction des os longs par membrane induite et autogreffe spongieuse [Reconstruction of the long bones by the induced membrane and spongy autograft]. Ann Chir Plast Esthet. 2000 Jun; 45 (3): 346–353. French. PMID: 10929461.

123. Masquelet AC. Induced Membrane Technique: Pearls and Pitfalls. J Orthop Trauma. 2017 Oct; 31 Suppl 5: S36–S38. doi: 10.1097/BOT.0000000000000979. PMID: 28938390.

124. Mathieu L, Bilichtin E, Durand M, de l’Escalopier N, Murison JC, Collombet JM, Rigal S. Masquelet technique for open tibia fractures in a military setting. Eur J Trauma Emerg Surg. 2020 Oct; 46 (5): 1099–1105. doi: 10.1007/s00068-019-01217-y. PMID: 31451864.

125. Mathieu L, Mourtialon R, Durand M, de Rousiers A, de l’Escalopier N, Collombet JM. Masquelet technique in military practice: specificities and future directions for combat-related bone defect reconstruction. Mil Med Res. 2022 Sep 2; 9 (1): 48. doi: 10.1186/s40779-022-00411-1. PMID: 36050805.

126. Grün W, Hansen EJJ, Andreassen GS, Clarke-Jenssen J, Madsen JE. Functional outcomes and healthrelated quality of life after reconstruction of segmental bone loss in femur and tibia using the induced membrane technique. Arch Orthop Trauma Surg. 2023 Aug; 143 (8): 4587–4596. doi: 10.1007/s00402-022-04714-9. PMID: 36460763.

127. Хоминец ВВ, Щукин АВ, Ткаченко МВ, Иванов ВС, Голдобин АН. Опыт лечения военнослужащего с огнестрельным переломо-вывихом проксимального отдела плечевой кости. Политравма. 2022; 3: 55–61. doi: 10.24412/1819-1495-2022-3-55-61.


Дополнительные файлы

Рецензия

Для цитирования:


Булгин Д.В., Базаров И.С., Хоминец В.В., Ковтун А.Л., Иванов Д.А., Радомcкая Е.Ю., Ширяев А.А., Зайчиков Д.А. Применение аутологичных биоматериалов в комбинации с биосовместимыми матриксами для восстановления дефектов костной ткани (обзор литературы). Вестник трансплантологии и искусственных органов. 2025;27(2):112-126. https://doi.org/10.15825/1995-1191-2025-2-112-126

For citation:


Bulgin D.V., Bazarov I.S., Khominets V.V., Kovtun A.L., Ivanov D.A., Radomskaya E.Yu., Shiryaev A.A., Zaichikov D.A. The use of autologous biomaterials in combination with biocompatible matrices for restoration of bone tissue defects (literature review). Russian Journal of Transplantology and Artificial Organs. 2025;27(2):112-126. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-112-126

Просмотров: 30


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)