Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Перспективы создания искусственных тканей и органов человека на основе метода трехмерной биопечати

https://doi.org/10.15825/1995-1191-2023-2-63-81

Полный текст:

Аннотация

Трехмерная (3D) печать – это процесс послойного создания в пространстве материального объекта из виртуальной, математической модели. Метод 3D-печати основан на аддитивных технологиях – поэтапном формировании конструкции путем добавления материала на основу. 3D-биопечать – создание функциональных биологических структур, которые имитируют органы и ткани человека. Анализ научных публикаций показал, что в недалеком будущем возможно получение жизнеспособных и полноценно функционирующих искусственных копий отдельных органов и тканей человека.

Об авторах

Д. В. Булгин
Национальный исследовательский центр «Курчатовский институт», ФГБНУ «Научно-исследовательский институт медицинской приматологии»
Россия

Булгин Дмитрий Викторович - кандидат медицинских наук заведующий лабораторией; Researcher ID: M-6687-2014; Scopus Author ID: 12799773100.

354376, Краснодарский край, Сочи, Адлерский р-н, с. Веселое, ул. Мира, д. 177. Тел. (862) 243-24-07

ORCID ID: 0000-0003-1739-8505

 

 



А. Л. Ковтун
Фонд перспективных исследований
Россия

Анатолий Леонидович Ковтун

Москва



И. Вл. Решетов
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Игорь Владимирович Решетов

Москва



Е. Ю. Радомская
Национальный исследовательский центр «Курчатовский институт», ФГБНУ «Научно-исследовательский институт медицинской приматологии»; АНО ОВО «Университет «Сириус»
Россия

Елена Юрьевна Радомская

Сочи; Краснодарский край, пгт. Сириус



Список литературы

1. Готье СВ. Клиническая трансплантология как самостоятельное направление медицины. Медицинский альманах. 2008; 5: 14–19.

2. Готье СВ. Трансплантология 2008–2018: десять лет развития. Вестник трансплантологии и искусственных органов. 2018; 20 (4): 6–7.

3. Хубутия МШ, Чжао АВ, Шадрин КБ. Послеоперационные осложнения у реципиентов при трансплантации печени: современные представления о патогенезе и основных направлениях профилактики и лечения. Вестник трансплантологии и искусственных органов. 2009; 11 (2): 60–66. doi: 10.15825/1995-1191-2009-2-60-66.

4. Климушева НФ. Трансплантация солидных органов: пути оптимизации и повышения эффективности: дис. … докт. мед. наук. М., 2016; 48.

5. Багненко СФ, Резник ОН. Ключевые проблемы развития трансплантологии и задачи высшего медицинского образования. Трансплантология. 2017; 9 (3): 192–210. doi: 10.23873/2074-0506-2017-9-3-192-210.

6. Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2017 году. X cообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2018; 20 (2): 6–28. doi: 10.15825/1995-1191-2018-2-6-28.

7. Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2019 году. XII сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2020; 22 (2): 8–34. doi: 10.15825/1995-11912020-2-8-34.

8. Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2020 году XIII сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2021; 23 (3): 8–34. doi: 10.15825/1995-11912021-3-8-34.

9. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008; 60 (2): 184–198. doi: 10.1016/j.addr.2007.08.041.

10. Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины. Вестник трансплантологии и искусственных органов. 2014; 16 (3): 93–108. doi: 10.15825/1995-1191-2014-3-93-108.

11. Kim JA, Kim HN, Im SK, Chung S, Kang JY, Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics. 2015; 9 (2) : 024115. doi: 10.1063/1.4917508.

12. Mori H, Gupta A, Torii S, Harari E, Jinnouchi H, Virmani R, Finn AV. Clinical implications of blood-material interaction and drug eluting stent polymers in review. Expert Rev Med Devices. 2017; 14 (9): 707–716. doi: 10.1080/17434440.2017.1363646.

13. Куевда ЕВ, Губарева ЕА, Гуменюк ИС, Карал­оглы ДД. Изучение биосовместимости ацеллюлярных матриксов легких приматов и возможностей их использования в качестве тканеинженерных конструкций. Современные технологии в медицине. 2017; 9 (4): 82–88. doi: 10.17691/stm2017.9.4.10.

14. Репин ВС, Сабурина ИН. От трансплантации органов к репаративным сфероидам и «микротканям» в суспензионной 3D-культуре. Клеточная трансплантология и тканевая инженерия. 2012; 7 (1): 106–108.

15. Готье СВ, Шагидулин МЮ, Онищенко НА, Крашенинников МЕ, Ильинский ИМ, Можейко НП и др. Коррекция хронической печеночной недостаточности при трансплантации клеток печени в виде суспензии и клеточно-инженерных конструкций (экспериментальное исследование). Вестник Российской академии медицинских наук. 2013; 68 (4): 44–51. doi: 10.15690/vramn.v68i4.610.

16. Layek B, Lipp L, Singh J. Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. Int J Mol Sci. 2015; 16 (12): 28912–28930. doi: 10.3390/ijms161226142.

17. Резник ОН, Кузьмин ДО, Скворцов АЕ, Резник АО. Биобанки – неоценимый ресурс трансплантации. История, современное состояние, перспективы. Вест ник трансплантологии и искусственных органов. 2016; 18 (4): 123–132. doi: 10.15825/1995-11912016-4-123-132.

18. Уграицкая СВ, Шишова НВ, Гагаринский ЕЛ, Швирст НЭ, Каурова СА, Гольтяев МВ и др. Влияние гелия на криоконсервацию клеток линий Hela и L929. Биофизика. 2018; 63 (3): 510–517.

19. Hasan M, Fayter AER, Gibson MI. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Microorganisms. Biomacromolecules. 2018; 19 (8): 3371–3376. doi: 10.1021/acs.biomac.8b00660.

20. Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res. 1988; 179 (2): 362–373. doi: 10.1016/0014-4827(88)90275-3.

21. Thayer P, Martinez H, Gatenholm E. History and Trends of 3D Bioprinting. Methods Mol Biol. 2020; 2140: 3–18. doi: 10.1007/978-1-0716-0520-2_1.

22. Mota FB, Braga LAM, Cabral BP, Conte Filho KG. Future of Bioprinted Tissues аnd Organs: A Two-Wave Global Survey. Foresight and STI Governance. 2022; 16 (1): 6–20. doi: 10.17323/2500-2597.2022.1.6.20.

23. Балясин МВ, Барановский ДС, Демченко АГ, Файзуллин АЛ, Красильникова ОА, Клабуков ИД и др. Экспериментальная ортотопическая имплантация тканеинженерной конструкции трахеи, созданной на основе заселенного мезенхимальными и эпителиальными клетками девитализированного матрикса. Вестник трансплантологии и искусственных органов. 2019; 21 (4): 96–107. doi: 10.15825/1995-1191-2019-4-96-107.

24. Кокорев ОВ. Саногенетическое обоснование применения тканеинженерных конструкций на основе пористого никелида титана при патологии различного генеза: дис. … докт. мед. наук. Томск, 2019. 44 с.

25. Grand View Research (2021) 3D Bioprinting Market Size, Share and Trends Analysis Report by Technology (Magnetic Levitation, Inkjet-based), by Application (Medical, Dental, Biosensors, Bioinks), by Region, and Segment Forecasts, 2021–2028, San Francisco, CA: Grand View Research. Available from: https://www. grandviewresearch.com/industry-analysis/3d-bioprinting-market.

26. Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters – Towards 3D bioprinting revolution! Int J Bioprint. 2018; 4 (2): 139. doi: 10.18063/IJB. v4i2.139.

27. Mota C, Camarero­Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in vitro Models. Chem Rev. 2020; 120 (19): 10547–10607. doi: 10.1021/acs.chemrev.9b00789.

28. Mota F, Braga L, Rocha L, Cabral B. 3D and 4D bioprinted human model patenting and the future of drug development. Nat Biotechnol. 2020; 38 (6): 689–694. doi: 10.1038/s41587-020-0540-1.

29. Advances in replacement organs and tissue engineering. Technical Insights, Frost & Sullivan. 2008. Available from: https://store.frost.com/advances-in-tissue-engineering-and-organ-regeneration-technical-insights.html.

30. Ozbolat IT, Bashirul Khoda AKM. Design of a New Parametric Path Plan for Additive Manufacturing of Hollow Porous Structures With Functionally Graded Materials. J Comput Inf Sci Eng. 2014; 14 (4) doi: 10.1115/1.402841831.

31. Коровин АЕ, Нагибович ОА, Пелешок СА, Копыленкова ТИ, Шилин ВП, Ольховик АЮ и др. 3D-моделирование и биопрототипирование в военной медицине. Клиническая патофизиология. 2015; 3: 17–23.

32. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013; 60 (3): 691–699. doi: 10.1109/ TBME.2013.2243912.

33. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication. 2010; 2 (3): 032001. doi: 10.1088/1758-5082/2/3/032001.33.

34. Богородский СЭ, Василец ВН, Кротова ЛИ, Минаева СА, Миронов АВ, Немец ЕА и др. Формирование биоактивных высокопористых полимерных матриксов для тканевой инженерии. Перспективные материалы. 2013; 5: 44–54.

35. Гулай ЮС, Крашенинников МЕ, Шагидулин МЮ, Онищенко НА. Тканевая инженерия печени (современное состояние проблемы по данным зарубежных источников). Вестник трансплантологии и искусственных органов. 2014; 16 (2): 103–113. doi: 10.15825/19951191-2014-2-103-113.

36. Онищенко НА, Гулай ЮС, Шагидулин МЮ, Никольская АО, Башкина ЛВ. Разработка имплантируемых клеточно- и тканеинженерных конструкций вспомогательной печени для лечения печеночной недостаточности. Гены и клетки. 2015; 10 (1): 6–17.

37. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release. 2008; 132 (2): 76–83. doi: 10.1016/j.jconrel.2008.08.010.

38. Wu C, Pan J, Bao Z, Yu Y. Fabrication and characterization of chitosan microcarrier for hepatocyte culture. J Mater Sci Mater Med. 2007; 18 (11): 2211–2214. doi: 10.1007/s10856-007-3071-0.

39. Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Tao C et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater. 2015; 12: 270–280. doi: 10.1016/j.actbio.2014.10.015.

40. Кириллова АД. Тканеспецифические матриксы из децеллюляризованных фрагментов печени и суставного хряща для тканевой инженерии: дис. … канд. биол. наук. М., 2021. 27 с.

41. Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014; 11 (100): 20140817. doi: 10.1098/rsif.2014.0817.

42. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules. 2015; 16 (5): 1489–1496. doi: 10.1021/acs.biomac.5b00188.

43. Moisenovich MM, Pustovalova OL, Arhipova AY, Vasiljeva TV, Sokolova OS, Bogush VG et al. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. J Biomed Mater Res A. 2011; 96 (1): 125–131. doi: 10.1002/jbm.a.32968.

44. Rhodes CJ. Toxicology of the Human Environment – the critical role of free radicals. London: Taylor and Francis; 2000.

45. Mahmood A, Patel D, Hickson B, DesRochers J, Hu X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. International Journal of Molecular Sciences. 2022; 23 (3): 1415. doi: 10.3390/ijms23031415.

46. Chistiakov DA. Liver regenerative medicine: advances and challenges. Cells Tissues Organs. 2012; 196 (4): 291–312. doi: 10.1159/000335697.

47. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32 (8): 773–785. doi: 10.1038/nbt.2958.

48. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012; 33 (6): 1782–1790. doi: 10.1016/j.biomaterials.2011.11.003.

49. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012; 18 (1): 33–44. doi: 10.1089/ten. TEC.2011.0060.

50. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009t; 30 (30): 5910–5917. doi: 10.1016/j.biomaterials.2009.06.034.

51. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009; 30 (8): 1587– 1595. doi: 10.1016/j.biomaterials.2008.12.009.

52. Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication. 2013; 5 (4): 045007. doi: 10.1088/17585082/5/4/045007.

53. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010; 2 (4): 045004. doi: 10.1088/1758-5082/2/4/045004.

54. Taniguchi D, Matsumoto K, Tsuchiya T, Machino R, Takeoka Y, Elgalad A et al. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact Cardiovasc Thorac Surg. 2018; 26 (5): 745–752. doi: 10.1093/icvts/ivx444.

55. Horváth L, Umehara Y, Jud C, Blank F, Petri­Fink A, Rothen­Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015; 5: 7974. doi: 10.1038/srep07974.

56. Gilevich IV, Sotnichenko AS, Karal­Ogly DD, Gubareva EA, Kuevda EV, Polyakov IS et al. In vivo Experimental Study of Biological Compatibility of Tissue Engineered Tracheal Construct in Laboratory Primates. Bull Exp Biol Med. 2018; 164 (6): 770–774. doi: 10.1007/s10517-018-4077-y.

57. Estermann M, Bisig C, Septiadi D, Petri­Fink A, Rothen­Rutishauser B. Bioprinting for Human Respiratory and Gastrointestinal in vitro Models. Methods Mol Biol. 2020; 2140: 199–215. doi: 10.1007/978-1-0716-05202_13.

58. Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther. 2010; 10 (3): 409–420. doi: 10.1517/14712590903563352.

59. Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 2012; 4 (2): 022001. doi: 10.1088/17585082/4/2/022001.

60. Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K et al. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae. PLoS One. 2015; 10 (9): e0136681. doi: 10.1371/journal.pone.0136681.

61. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015; 1 (9): e1500758. doi: 10.1126/sciadv.1500758.

62. Yamamoto T, Funahashi Y, Mastukawa Y, Tsuji Y, Mizuno H, Nakayama K et al. MP19-17 Human urethraengineered with human mesenchymal stem cell with maturation by rearrangement of cells for self-organization – newly developed scaffold-free three-dimensional bio-printer. The Journal of Urology. 2015; 193 (4): e221–e222. doi: 10.1016/j.juro.2015.02.1009.

63. Lemaire F, Moeun BN, Champion KS, Getsios S, Wadsworth S, Russo V et al. P.170: Preliminary Results on the Development of a Perfusion Device to Study the Function of 3D Bioprinted Pancreatic Tissue In Vitro. Transplantation. 2021; 105 (12 Suppl 2): S72. doi: 10.1097/01.tp.0000804724.41562.ec.

64. Dickman C, Campbell S, Tong H, Jalili R, Beyer S, Mohamed T et al. 3D bioprinted hepatocyte and mesenchymal stem cell spheroids as a cell therapy for liver disease. Journal of Hepatology. 2022; 77 (S1): S764.

65. Sharma R, Smits IPM, De La Vega L, Lee C, Willerth SM. 3D Bioprinting Pluripotent Stem Cell Derived Neural Tissues Using a Novel Fibrin Bioink Containing Drug Releasing Microspheres. Front Bioeng Biotechnol. 2020; 8: 57. doi: 10.3389/fbioe.2020.00057.

66. Dickman CTD, Russo V, Thain K, Pan S, Beyer ST, Walus K et al. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. FASEB J. 2020; 34 (1): 1652–1664. doi: 10.1096/fj.201901063RR.

67. Bowles RD, Gebhard HH, Härtl R, Bonassar LJ. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A. 2011; 108 (32): 13106–13111. doi: 10.1073/pnas.1107094108.

68. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO et al. 3D printed bionic ears. Nano Lett. 2013; 13 (6): 2634–2639. doi: 10.1021/nl4007744.

69. Madden LR, Nguyen TV, Garcia­Mojica S, Shah V, Le AV, Peier A et al. Bioprinted 3D Primary Human Intestinal Tissues Model Aspects of Native Physiology and ADME/Tox Functions. iScience. 2018; 2: 156–167. doi: 10.1016/j.isci.2018.03.015.

70. Langer EM, Allen­Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM et al. Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting. Cell Rep. 2019; 26 (3): 608–623.e6. doi: 10.1016/j.celrep.2018.12.090.

71. Nguyen DG, Pentoney SL Jr. Bioprinted three dimensional human tissues for toxicology and disease modeling. Drug Discov Today Technol. 2017; 23: 37–44. doi: 10.1016/j.ddtec.2017.03.001.

72. Hardwick RN, Viergever C, Chen AE, Nguyen DG. 3D bioengineered tissues: From advancements in in vitro safety to new horizons in disease modeling. Clin Pharmacol Ther. 2017; 101 (4): 453–457. doi: 10.1002/cpt.569.

73. Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev. 2018; 132: 235–251. doi: 10.1016/j.addr.2018.06.011.

74. Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL. Editor’s Highlight: Modeling CompoundInduced Fibrogenesis In Vitro Using Three-Dimensional Bioprinted Human Liver Tissues. Toxicol Sci. 2016; 154 (2): 354–367. doi: 10.1093/toxsci/kfw169.

75. Organovo Synthesizes Human Liver Tissue With 3D Bioprinting. Available from: https://www.bioprocessonline.com/doc/organovo-synthesizes-human-liver-tissue-with-d-bioprinting-0001/.

76. Architecture of ExVive™ 3D Bioprinted Human Liver Tissue with distinct hepatocellular (HC) and non-parenchymal cell (NPC) compartments. Available from: https://organovo.com/technology-platform/.

77. Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D’Amico F, Mulligan D et al. Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci. 2018; 3 (3): 203–213. doi: 10.1515/iss-2018-0016.

78. Fazal F, Raghav S, Callanan A, Koutsos V, Radacsi N. Recent advancements in the bioprinting of vascular grafts. Biofabrication. 2021; 13 (3). doi: 10.1088/17585090/ac0963.

79. Lawlor KT, Vanslambrouck JM, Higgins JW, Chambon A, Bishard K, Arndt D et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021; 20 (2): 260–271. doi: 10.1038/s41563-020-00853-9.

80. Moroni S, Casettari L, Lamprou DA. 3D and 4D Printing in the Fight against Breast Cancer. Biosensors (Basel). 2022; 12 (8): 568. doi: 10.3390/bios12080568.

81. TeVido BioDevices: Recuperating Lost Skin Pigmentation Through Advanced Cellular Therapy. Available from: http://tevidobiodevices.com.

82. Nano3D Biosciences Makes Major 3D Bioprinting Breakthrough in Breast Cancer Research. Available from: https://3dprint.com/22681/nano3d-rbcc-3d-printcancer.

83. 3D Cell Culture Technologies Global Market Report 2021: COVID-19 Growth and Change to 2030 provides strategists, marketers and senior management with the critical information they need to assess the global 3d cell culture technologies market. Available from: https://www.researchandmarkets.com/reports/5446076/3dcell-culture-technologies-global-market-report.

84. Rainbow Coral and Nano3D Biosciences Pursue New 3D Bioprinting Opportunities, Partnerships. Available from: http://www.rainbowbiosciences.com.

85. 3-D Printed Implants Hit The Market, Pave The Way For More Personalized Devices. Available from: http://tissuesys.com/trs_media/publications/The_Gray_Sheet_3D_Printer.pdf.

86. New NASA video shows how nScrypt’s BFF bioprinter will be used in space. Available from: https://www.3dprintingmedia.network/spacex-launches-nscrypts-bff-bioprinter-space.

87. 4D Bio3 – The Geneva Foundation. Available from: https://genevausa.org/wp-content/uploads/2019/03/4dbio3-with-dr.-ho.pdf.

88. Ruggedized 3D printers for medical use in harsh military environments. Available from: https://www.eetimes. com/ruggedized-3d-printers-for-medical-use-in-harshmilitary-environments/.

89. Cadets research bioprinting to improve soldier care in the future. Available from: https://www.army.mil/article/232736/cadets_research_bioprinting_to_improve_soldier_care_in_the_future.

90. Bandages, Knee Cartilage, Surgical Tools Successfully 3D Printed in Desert Deployment Zone. Available from: https://www.odtmag.com/contents/view_breakingnews/2019-10-08/bandages-knee-cartilage-surgicaltools-successfully-3d-printed-in-desert-deploymentzone.

91. Donohue MA, Zhou L, Haley CA. Meniscus Injuries in the Military Athlete. J Knee Surg. 2019; 32 (2): 123– 126. doi: 10.1055/s-0038-1676959.

92. Strobel HA, Schultz A, Moss SM, Eli R, Hoying JB. Quantifying Vascular Density in Tissue Engineered Constructs Using Machine Learning. Front Physiol. 2021; 12: 650714. doi: 10.3389/fphys.2021.650714.

93. Explore 6-Axis Robots by Series. Available from: https://epson.com/6-axis-robots-product-family.

94. A Robot That Prints Tissue. Available from: https://www.asme.org/topics-resources/content/a-robot-thatprints-tissue.

95. Strobel HA, Gerton T, Hoying JB. Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication. 2021; 13 (3). doi: 10.1088/1758-5090/abe187.

96. Bio-printed Constructs for Battlefield Burn Repairs. Available from: https://www.microfab.com/3-d-printing.

97. Onode E, Uemura T, Takamatsu K, Yokoi T, Shintani K, Hama S et al. Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats. Sci Rep. 2021; 11 (1): 4204. doi: 10.1038/s41598-021-83385-9.

98. Digital fabricaton by multi-materials additive manufacturing 4D-Printing. Available from: https://www.fmf.uni-freiburg.de/de/projects/the-freiburg-3d-printingalliance-f3d/the-freiburg-3d-printing-alliance-f3d.

99. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev. 2017; 117 (15): 10212–10290. doi: 10.1021/acs.chemrev.7b00074.

100. Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Additive Manufacturing. 2017; 13: 179–200. doi: 10.1016/j.addma.2016.10.003.

101. EnvisionTEC: 3D-Bioplotter. Available from: https://3dsman.com/envisiontec-3d-bioplotter.

102. Shudo Y, MacArthur JW, Kunitomi Y, Joubert L, Kawamura M, Ono J et al. Three-Dimensional Multilayered Microstructure Using Needle Array Bioprinting System. Tissue Eng Part A. 2020; 26 (5–6): 350–357. doi: 10.1089/ten.TEA.2019.0313.

103. Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based ThreeDimensional Bioprinting. Tissue Eng Part B Rev. 2017; 23 (3): 237–244. doi: 10.1089/ten.TEB.2016.0322.

104. Moldovan L, Barnard A, Gil CH, Lin Y, Grant MB, Yoder MC et al. iPSC-Derived Vascular Cell Spheroids as Building Blocks for Scaffold-Free Biofabrication. Biotechnol J. 2017; 12 (12). doi: 10.1002/biot.201700444.

105. Aguilar IN, Smith LJ, Olivos DJ 3rd, Chu TG, Kacena MA, Wagner DR. Scaffold-free Bioprinting of Mesenchymal Stem Cells with the Regenova Printer: Optimization of Printing Parameters. Bioprinting. 2019; 15: e00048. doi: 10.1016/j.bprint.2019.e00048.

106. Cui Y, Jin R, Zhang Y, Yu M, Zhou Y, Wang LQ. Cellulose Nanocrystal-Enhanced Thermal-Sensitive Hydrogels of Block Copolymers for 3D Bioprinting. Int J Bioprint. 2021; 7 (4): 397. doi: 10.18063/ijb.v7i4.397.

107. Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials. 2018; 162: 34–46. doi: 10.1016/j.biomaterials.2018.01.057.

108. Daly AC, Kelly DJ. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials. 2019; 197: 194–206. doi: 10.1016/j.biomaterials.2018.12.028.

109. Filardo G, Petretta M, Cavallo C, Roseti L, Durante S, Albisinni U et al. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res. 2019; 8: 101–106. doi: 10.1302/20463758.82.BJR-2018-0134.R1.

110. Derr K, Zou J, Luo K, Song MJ, Sittampalam GS, Zhou C et al. Fully Three-Dimensional Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function. Tissue Eng Part C Methods. 2019; 25 (6): 334–343. doi: 10.1089/ten.TEC.2018.0318.

111. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci (Weinh). 2019; 6 (11): 1900344. doi: 10.1002/advs.201900344.

112. Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res A. 2007; 81 (4): 888–899. doi: 10.1002/jbm.a.31142.

113. Seen S, Young S, Lang SS, Lim TC, Amrith S, Sundar G. Orbital Implants in Orbital Fracture Reconstruction: A Ten-Year Series. Craniomaxillofac Trauma Reconstr. 2021; 14 (1): 56–63. doi: 10.1177/1943387520939032.

114. Laubach M, Suresh S, Herath B, Wille ML, Delbrück H, Alabdulrahman H et al. Clinical translation of a patientspecific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat. 2022; 34: 73–84. doi: 10.1016/j.jot.2022.04.004.

115. Villar G, Graham AD, Bayley H. A tissue-like printed material. Science (New York, N.Y.). 2013; 340 (6128): 48–52. doi: 10.1126/science.1229495.

116. Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA et al. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. Adv Sci (Weinh). 2019; 7 (1): 1901719. doi: 10.1002/advs.201901719.

117. Tibbetts JH. The Future of Bioprinting: Multidisciplinary teams seek to create living human organs. BioScience. 2021; 71 (6): 564–570. doi: 10.1093/biosci/biab046.

118. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018; 132: 296–332. doi: 10.1016/j.addr.2018.07.004.

119. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020; 4 (4): 370–380. doi: 10.1038/s41551-0190471-7.

120. Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. Tissue Eng Part B Rev. 2017; 23 (1): 9–26. doi: 10.1089/ten.TEB.2016.0200.

121. Park SH, Jung CS, Min BH. Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Eng Regen Med. 2016; 13 (6): 622–635. doi: 10.1007/s13770-016-0145-4.

122. Huang Y, Zhang XF, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering. Biotechnol J. 2017; 12 (8): 1600734. doi: 10.1002/biot.201600734.

123. Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X et al. 3D Bioprinting: from Benches to Translational Applications. Small. 2019; 15 (23): e1805510. doi: 10.1002/smll.201805510.

124. Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G et al. Advances and Future Perspectives in 4D Bioprinting. Biotechnol J. 2018; 13 (12): e1800148. doi: 10.1002/biot.201800148.

125. Mao S, Pang Y, Liu T, Shao Y, He J, Yang H et al. Bioprinting of in vitro tumor models for personalized cancer treatment: a review. Biofabrication. 2020; 12 (4): 042001. doi: 10.1088/1758-5090/ab97c0.

126. Gao G, Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett. 2016; 38 (2): 203–211. doi: 10.1007/s10529-015-1975-1.

127. Zhu W, Yu C, Sun B, Chen S. Bioprinting of Complex Vascularized Tissues. Methods Mol Biol. 2021; 2147: 163–173. doi: 10.1007/978-1-0716-0611-7_14.

128. Yu J, Park SA, Kim WD, Ha T, Xin YZ, Lee J et al. Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers (Basel). 2020; 12 (12): 2958. doi: 10.3390/polym12122958.

129. de Vries RB, Leenaars M, Tra J, Huijbregtse R, Bongers E, Jansen JA et al. The potential of tissue engineering for developing alternatives to animal experiments: a systematic review. J Tissue Eng Regen Med. 2015; 9 (7): 771–778. doi: 10.1002/term.1703.

130. Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci. 2021; 22 (8): 3971. doi: 10.3390/ijms22083971.

131. Dias JR, Ribeiro N, Baptista­Silva S, Costa­Pinto AR, Alves N, Oliveira AL. In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Front Bioeng Biotechnol. 2020; 8: 85. doi: 10.3389/fbioe.2020.00085.

132. Dababneh AB, Ozbolat IT. Bioprinting Technology: A Current State-of-the-Art Review. ASME J Manuf Sci Eng. 2014; 136 (6): 061016. doi: 10.1115/1.4028512.

133. Бобылов ЮА. Об угрозах нового биологического оружия и биобезопасности России. Качественная клиническая практика. 2008; (3): 94–99.

134. Буренок ВМ, Ивлев АА, Корчак ВЮ. Аналитический обзор деятельности Управления перспективных исследовательских проектов МО США. Развитие военных технологий XXI века: проблемы, планирование, реализация. Тверь: Купол, 2009: 93; 624.

135. A Compendium of DARPA Programs. Available from: www.darpa.mil/body/strategic.html.

136. Клабуков ИД. Исследовательская программа DARPA на 2015 год. М.: Исследовательское сообщество, 2014; 96. Klabukov ID. Issledovatel’skaja programma DARPA na 2015 god. M.: Issledovatel’skoe soobshhestvo, 2014; 96. doi: 10.2139/ssrn.2439081.

137. Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL et al. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release. 2021; 329: 237–256. doi: 10.1016/j.jconrel.2020.11.044.

138. Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of bioprinting in revolutionalizing medical science: Advances and possibilities. Regen Ther. 2021; 18: 133– 145. doi: 10.1016/j.reth.2021.05.006.

139. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020; 18: 100479. doi: 10.1016/j.apmt.2019.100479.

140. Bea S. Opt-out policy and the organ shortage problem: Critical insights and practical considerations. Transplant Rev (Orlando). 2021; 35 (1): 100589. doi: 10.1016/j. trre.2020.100589.

141. Gardin C, Ferroni L, Latremouille C, Chachques JC, Mitrečić D, Zavan B. Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells. 2020; 9 (3): 742. doi: 10.3390/cells9030742.

142. Mota F, Braga LAM, Cabral BP, Conte Filho CG. What is the future of lab-on-a-chip diagnostic devices? Assessing changes in experts’ expectations over time. Foresight. 2021; 23 (6): 640–654. doi: 10.1108/FS-05-20210101.

143. Li R, Ting YH, Youssef SH, Song Y, Garg S. Three-Dimensional Printing for Cancer Applications: Research Landscape and Technologies. Pharmaceuticals (Basel). 2021; 14 (8): 787. doi: 10.3390/ph14080787.

144. Giacomini KM, Krauss RM, Roden DM, Eichelbaum M, Hayden MR, Nakamura Y. When good drugs go bad. Nature. 2007; 446 (7139): 975–977. doi: 10.1038/446975a.

145. Niu SY, Xin MY, Luo J, Liu MY, Jiang ZR. DSEP: A Tool Implementing Novel Method to Predict Side Effects of Drugs. J Comput Biol. 2015; 22 (12): 1108–1117. doi: 10.1089/cmb.2015.0129.

146. Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng. 2018; 38 (1): 158–169. doi: 10.1016/j.bbe.2017.12.001.


Дополнительные файлы

Рецензия

Для цитирования:


Булгин Д.В., Ковтун А.Л., Решетов И.В., Радомская Е.Ю. Перспективы создания искусственных тканей и органов человека на основе метода трехмерной биопечати. Вестник трансплантологии и искусственных органов. 2023;25(2):63-81. https://doi.org/10.15825/1995-1191-2023-2-63-81

For citation:


Bulgin D.V., Kovtun A.L., Reshetov I.V., Radomskaya E.Yu. Prospects for fabrication of artificial human tissues and organs based on 3D bioprinting. Russian Journal of Transplantology and Artificial Organs. 2023;25(2):63-81. https://doi.org/10.15825/1995-1191-2023-2-63-81

Просмотров: 214


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)