Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Программируемая гибель клеток и заболевания печени

https://doi.org/10.15825/1995-1191-2022-1-72-88

Полный текст:

Аннотация

Гибель клеток печени является наиболее критическим состоянием, которое предопределяет формирование в ней таких патологических состояний, как воспаление, фиброз и клеточная трансформация. Проведен анализ результатов исследований об участии различных типов программируемой гибели клеток (ПГК) в патогенезе заболеваний печени. Рассмотрено три основных типа ПГК (аутофагия, апоптоз, некроз) и пять дополнительных, пока недостаточно изученных ПГК – некроптоз, ферроптоз, пироптоз, партанатоз и энтоз, наблюдаемых в печени при различных острых и хронических заболеваниях. Установлено одновременное участие нескольких ПГК в развитии какой-либо одной патологии и одного типа ПГК в разных патологиях. Этот факт свидетельствует о существовании перекрестной регуляции метаболизма в клетках печени с различным уровнем повреждения при формировании основного доминирующего типа ПГК. Имеющиеся результаты указывают на возможность ослабления (коррекции) функциональных и морфологических проявлений ПГК в органе путем контролируемого блокирования эффекторных путей ПГК, а также направленной индукции в клетках печени аутофагии, антиапоптотических и антинекротических механизмов.

Об авторах

Н. А. Онищенко
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



З. З. Гоникова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Гоникова Залина Залимгериевна

123182, Москва, ул. Щукинская, д. 1.

Тел. (966) 188-33-33



А. О. Никольская
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



Л. А. Кирсанова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



В. И. Севастьянов
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



Список литературы

1. Ярилин АА. Апоптоз: природа феномена и его роль в норме и при патологии. Актуальные проблемы патофизиологии: избранные лекции под ред. Б.Б. Мороза. М.: Медицина, 2001: 13–56.

2. Tak H, Matsui Y, Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxidants and Redox Signaling. 2007; 9 (9): 1373–1381.

3. Губский ЮИ. Смерть клетки: свободные радикалы, некроз, апоптоз: монография. Винница: Нова книга, 2015. 360.

4. Потапнев МП. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого. Иммунология. 2014; 2: 95–102.

5. Shojaie L, Iorga A, Dara L. Cell Death in Liver Diseases: A Review. Int J Mol Sci. 2020 Dec; 21 (24): 9682. doi: 10.3390/ijms21249682.

6. Aizawa S, Brar G, Tsukamoto H. Cell Death and Liver Disease. Gut Liver. 2020 Jan; 14 (1): 20–29. doi: 10.5009/gnl18486.

7. Xie Z, Klionsky DJ. Autophagosome Formation: Core Machinery and Adaptations. Nat Cell Biol. 2007: 1102– 1109. doi: 10.1038/ncb1007-1102.

8. Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Ann Rev Immunol. 2012; 30: 611–646.

9. Romao S, Gannage M, Munz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin Cancer Biol. 2013; 23 (5): 391–396.

10. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2011; 146 (5): 682–695.

11. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPS: signal Os that spur autophagy and immunity. Immunol Rev. 2012; 249 (1): 158–175.

12. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25: 486–541. doi: 10.1038/s41418-017-0012-4.

13. Liu G, Bi Y, Wang R, Wang X. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J Leukoc Biol. 2013; 93 (4): 511–519.

14. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular Definitions of Cell Death Subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012: 107–120. doi: 10.1038/cdd.2011.96.

15. Yin XM. Autophagy in Liver Diseases: A Matter of What to Remove and Whether to Keep. Liver Res. 2018: 109– 111. doi: 10.1016/j.livres.2018.09.001.

16. Ding W, Li M, Chen X, Ni H, Lin C, Gao W et al. Autophagy Reduces Acute Ethanol-Induced Hepatotoxicity and Steatosis in Mice. Gastroenterology. 2010; 139: 1740–1752. doi: 10.1053/j.gastro.2010.07.041.

17. Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X et al. Pharmacological Promotion of Autophagy Alleviates Steatosis and Injury in Alcoholic and Non-Alcoholic Fatty Liver Conditions in Mice. J Hepatol. 2013; 58: 993–999. doi: 10.1016/j.jhep.2013.01.011.

18. Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y et al. Removal of Acetaminophen Protein Adducts by Autophagy Protects against Acetaminophen-Induced Liver Injury in Mice. J Hepatol. 2016; 65: 354–362. doi: 10.1016/j.jhep.2016.04.025.

19. Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated Induction of Autophagy and Mitochondrial Spheroids Limits Acetaminophen-Induced Necrosis in the Liver. Redox Biol. 2013: 427–432. doi: 10.1016/j.redox.2013.08.005.

20. Ding WX, Yin XM. Sorting, Recognition and Activation of the Misfolded Protein Degradation Pathways through Macroautophagy and the Proteasome. Autophagy. 2008: 141–150. doi: 10.4161/auto.5190.

21. Khambu B, Wang L, Zhang H, Yin X-M. The Activation and Function of Autophagy in Alcoholic Liver Disease. Curr Mol Pharmacol. 2017; 10: 165–171. doi: 10.2174 /1874467208666150817112654.

22. Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP et al. Nrf2 Promotes the Development of Fibrosis and Tumorigenesis in Mice with Defective Hepatic Autophagy. J Hepatol. 2014; 61: 617–625. doi: 10.1016/j.jhep.2014.04.043.

23. Eid N, Ito Y, Maemura K, Otsuki Y. Elevated Autophagic Sequestration of Mitochondria and Lipid Droplets in Steatotic Hepatocytes of Chronic Ethanol-Treated Rats: An Immunohistochemical and Electron Microscopic Study. J Mol Histol. 2013; 44: 311–326. doi: 10.1007/s10735-013-9483-x.

24. Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of Autophagy Protects against Acetaminophen-Induced Hepatotoxicity. Hepatology. 2012; 55: 222–232. doi: 10.1002/hep.24690.

25. Hu C, Zhao L, Shen M, Wu Z, Li L. Autophagy Regulation Is an Effective Strategy to Improve the Prognosis of Chemically Induced Acute Liver Injury Based on Experimental Studies. J Cell Mol Med. 2020: 8315–8325. doi: 10.1111/jcmm.15565.

26. Lin Z, Wu F, Lin S, Pan X, Jin L, Lu T et al. Adiponectin Protects against Acetaminophen-Induced Mitochondrial Dysfunction and Acute Liver Injury by Promoting Autophagy in Mice. J Hepatol. 2014; 61: 825–831. doi: 10.1016/j.jhep.2014.05.033.

27. Baulies A, Ribas V, Núñez S, Torres S, Alarcón-Vila C, Martínez L et al. Lysosomal Cholesterol Accumulation Sensitizes to Acetaminophen Hepatotoxicity by Impairing Mitophagy. Sci Rep. 2015; 5. doi: 10.1038/ srep18017.

28. Дятлова АС, Дудков АВ, Линькова НС, Хавинсон ВХ. Молекулярные маркеры каспаза-зависимого и митохондриального апоптоза: роль в развитии патологии и в процессах клеточного старения. Успехи современной биологии. 2018; 138 (2): 126–137.

29. Рыжов СВ, Новиков ВВ. Молекулярные механизмы апоптотических процессов. Российский биотерапевтический журнал. 2002; 1 (3): 17–25.

30. Janssen WJ, Henson PM. Cellular regulation of the inflammatory response. Toxicol Pathol. 2012; 40 (2): 166–173.

31. Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010; 140 (6): 798–804.

32. Peter C, Wesselborg S, Herrman M, Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis. 2010; 15 (9): 1007–1028.

33. Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signaling pathways. Tren Immunol. 2014; 35 (12): 631–639.

34. Льюин Б. Клетки. М.: Бином. Лаборатория знаний, 2011. 951 с.

35. Riedl SJ, Salvesen GS. The Apoptosome: Signalling Platform of Cell Death. Nat Rev Mol Cell Biol. 2007; 8: 405–413. doi: 10.1038/nrm2153. 35.

36. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL et al. Linear Ubiquitination Prevents Inflammation and Regulates Immune Signalling. Nature. 2011; 471: 591–596. doi: 10.1038/nature09816.36.

37. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 Regulates an NF-ΚB-Independent Cell-Death Switch in TNF Signaling. Curr Biol. 2007; 17: 418–424. doi: 10.1016/j. cub.2007.01.027. 37.

38. Ashkenazi A, Salvesen G. Regulated Cell Death: Signaling and Mechanisms. Annu Rev Cell Dev Biol. 2014; 30: 337–356. doi: 10.1146/annurev-cellbio-100913-013226. 38.

39. Brenner D, Blaser H, Mak TW. Regulation of Tumour Necrosis Factor Signalling: Live or Let Die. Nat Rev Immunol. 2015; 15: 362–374. doi: 10.1038/nri3834.

40. Голубев АМ, Москалева ЕЮ, Северин СЕ и др. Апоптоз при критических состояниях. Общая реаниматология. 2006; 2 (6): 184–190.

41. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion. Nat Rev Mol Cell Biol. 2010; 11: 700–714. doi: 10.1038/nrm2970.

42. Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A mechanistic review of cell death in alcohol-induced liver injury. Alcohol Clin Exp Res. 2016; 40: 1215– 1223. doi: 10.1111/acer.13078.

43. Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014; 147: 765–783. doi: 10.1053/j.gastro.2014.07.018.

44. Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol. 2018; 15: 738–752. doi: 10.1038/s41575- 018-0065-y.

45. Cahill A, Cunningham CC, Adachi M, Ishii H, Bailey SM, Fromenty B, Davies A. Effects of Alcohol and Oxidative Stress on Liver Pathology: The Role of the Mitochondrion. Alcohol Clin Exp Res. 2002; 26: 907– 915. doi: 10.1111/j.1530-0277.2002.tb02621.x.

46. Adachi M, Higuchi H, Miura S, Azuma T, Inokuchi S, Saito H et al. Bax Interacts with the Voltage-Dependent Anion Channel and Mediates Ethanol-Induced Apoptosis in Rat Hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2004; 287. doi: 10.1152/ajpgi.00415.2003.

47. Malhi H, Gores GJ. Cellular and Molecular Mechanisms of Liver Injury. Gastroenterology. 2008; 134: 1641–1654. doi: 10.1053/j.gastro.2008.03.002.

48. Hartmann P, Seebauer CT, Schnabl B. Alcoholic Liver Disease: The Gut Microbiome and Liver Cross Talk. Alcohol Clin Exp Res. 2015: 763–775. doi: 10.1111/ acer.12704.

49. Natori S, Rust C, Stadheim LM, Srinivasan A, Burgart LJ, Gores GJ. Hepatocyte Apoptosis Is a Pathologic Feature of Human Alcoholic Hepatitis. J Hepatol. 2001; 34: 248–253. doi: 10.1016/S0168-8278(00)00089-1.

50. Hao F, Cubero FJ, Ramadori P, Liao L, Haas U, Lambertz D et al. Inhibition of Caspase-8 Does Not Protect from Alcohol-Induced Liver Apoptosis but Alleviates Alcoholic Hepatic Steatosis in Mice. Cell Death Dis. 2017; 8: e3152. doi: 10.1038/cddis.2017.532.

51. Wilson CH, Kumar S. Caspases in Metabolic Disease and Their Therapeutic Potential. Cell Death Differ. 2018: 1010–1024. doi: 10.1038/s41418-018-0111-x.

52. Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X, Cohen JI et al. Inhibition of Apoptosis Protects Mice from Ethanol-Mediated Acceleration of Early Markers of CCl4-Induced Fibrosis but Not Steatosis or Inflammation. Alcohol Clin Exp Res. 2012; 36: 1139–1147. doi: 10.1111/j.1530-0277.2011.01720.x.

53. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ. Hepatocyte Apoptosis and Fas Expression Are Prominent Features of Human Nonalcoholic Steatohepatitis. Gastroenterology. 2003; 125: 437–443. doi: 10.1016/S0016-5085(03)00907-7.

54. Thapaliya S, Wree A, Povero D, Inzaugarat ME, Berk M, Dixon L et al. Caspase 3 Inactivation Protects against Hepatic Cell Death and Ameliorates Fibrogenesis in a Diet-Induced NASH Model. Dig Dis Sci. 2014; 59: 1197–1206. doi: 10.1007/s10620-014-3167-6.

55. Hatting M, Zhao G, Schumacher F, Sellge G, Al Masaoudi M, Gaßler N et al. Hepatocyte Caspase-8 Is an Essential Modulator of Steatohepatitis in Rodents. Hepatology. 2013; 57: 2189–2201. doi: 10.1002/ hep.26271.

56. Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB, Avagnina A et al. The Pan-Caspase Inhibitor Emricasan (IDN-6556) Decreases Liver Injury and Fibrosis in a Murine Model of Non-Alcoholic Steatohepatitis. Liver Int. 2015; 35: 953–966. doi: 10.1111/ liv.12570.

57. Zhao P, Sun X, Chaggan C, Liao Z, Wong K, He F et al. An AMPK–Caspase-6 Axis Controls Liver Damage in Nonalcoholic Steatohepatitis. Science. 2020; 367: 652– 660. doi: 10.1126/science.aay0542.

58. Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis. Semin Liver Dis. 2019; 39: 235–248. doi: 10.1055/s-0039- 1681032.

59. Roh YS, Kim JW, Park S, Shon C, Kim S, Eo SK et al. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. Am J Pathol. 2018; 188: 2574–2588. doi: 10.1016/j.ajpath.2018.07.011.

60. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA et al. Toxic Bile Salts Induce Rodent Hepatocyte Apoptosis via Direct Activation of Fas. J Clin Investig. 1999; 103: 137–145. doi: 10.1172/ JCI4765.

61. Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced Apoptosis Relates to Bile Duct Loss in Primary Biliary Cirrhosis. Hepatology. 1997; 26: 1399–1405. doi: 10.1002/hep.510260604.

62. Iwata M, Harada K, Hiramatsu K, Tsuneyama K, Kaneko S, Kobayashi K, Nakanuma Y. Fas Ligand Expressing Mononuclear Cells around Intrahepatic Bile Ducts Co-Express CD68 in Primary Biliary Cirrhosis. Liver. 2000; 20: 129–135. doi: 10.1034/j.1600- 0676.2000.020002129.x.

63. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002; 123: 1323–1330. doi: 10.1053/ gast.2002.35953.

64. Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K et al. Death Receptor 5 MediatedApoptosis Contributes to Cholestatic Liver Disease. Proc Natl Acad Sci USA. 2008; 105: 10895–10900. doi: 10.1073/pnas.0802702105.

65. Cubero FJ, Peng J, Liao L, Su H, Zhao G, Eugenio Zoubek M et al. Inactivation of Caspase 8 in Liver Parenchymal Cells Confers Protection against Murine Obstructive Cholestasis. J Hepatol. 2018; 69: 1326–1334. doi: 10.1016/j.jhep.2018.08.015.

66. Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The Caspase Inhibitor IDN-6556 Attenuates Hepatic Injury and Fibrosis in the Bile Duct Ligated Mouse. J Pharmacol Exp Ther. 2004; 308: 1191–1196. doi: 10.1124/jpet.103.060129.

67. Eguchi A, Koyama Y, Wree A, Johnson CD, Nakamura R, Povero D et al. Emricasan, a Pan-Caspase Inhibitor, Improves Survival and Portal Hypertension in a Murine Model of Common Bile-Duct Ligation. J Mol Med. 2018; 96: 575–583. doi: 10.1007/s00109-018- 1642-9.

68. Lau JYN, Xie X, Lai MMC, Wu PC. Apoptosis and Viral Hepatitis. Semin Liver Dis. 1998; 18: 169–176. doi: 10.1055/s-2007-1007152.

69. Kountouras J, Zavos C, Chatzopoulos D. Apoptosis in Hepatitis C. J Viral Hepat. 2003: 335–342. doi: 10.1046/j.1365-2893.2003.00452.x.

70. Ehrmann J, Galuszková D, Ehrmann J, Krè I, Jezdinská V, Vojtì Ek B et al. Apoptosis-Related Proteins, BCL-2, BAX, FAS, FAS-L and PCNA in Liver Biopsies of Patients with Chronic Hepatitis B Virus Infec- tion. Pathol Oncol Res. 2000; 6: 130–135. doi: 10.1007/ BF03032363.

71. Luo KX, Zhu YF, Zhang LX, He HT, Wang XS, Zhang L. In situ Investigation of Fas/FasL Expression in Chronic Hepatitis B Infection and Related Liver Diseases. J Viral Hepat. 1997; 4: 303–307. doi: 10.1046/j.1365- 2893.1997.00053.x.

72. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D et al. Essential versus Accessory Aspects of Cell Death: Recommendations of the NCCD 2015. Cell Death Differ. 2015; 22: 58–73. doi: 10.1038/ cdd.2014.137.

73. Giorgio V, Von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M et al. Dimers of Mitochondrial ATP Synthase Form the Permeability Transition Pore. Proc Natl Acad Sci USA. 2013; 110: 5887–5892. doi: 10.1073/ pnas.1217823110.

74. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. Acetaminophen Induced Hepatic Necrosis. IV. Protective Role of Glutathione. J Pharmacol Exp Ther. 1973; 187: 211–217.

75. Pumford NR, Hinson JA, Wayne Benson R, Roberts DW. Immunoblot Analysis of Protein Containing 3-(CysteinS-Yl) Acetaminophen Adducts in Serum and Subcellular Liver Fractions from Acetaminophen-Treated Mice. Toxicol Appl Pharmacol. 1990; 104: 521–532. doi: 10.1016/0041-008X(90)90174-S.

76. Ramachandran A, Jaeschke H. Acetaminophen Hepatotoxicity. Semin Liver Dis. 2019; 39: 221–234. doi: 10.1055/s-0039-1679919.

77. Moles A, Torres S, Baulies A, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial-Lysosomal Axis in Acetaminophen Hepatotoxicity. Front Pharmacol. 2018. doi: 10.3389/fphar.2018.00453.

78. Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A, Lemasters JJ, Jaeschke H. Apoptosis-Inducing Factor Modulates Mitochondrial Oxidant Stress in Acetaminophen Hepatotoxicity. Toxicol Sci. 2011; 122: 598–605. doi: 10.1093/toxsci/kfr116.

79. Chen D, Ni HM, Wang L, Ma X, Yu J, Ding WX, Zhang L. P53 Up-Regulated Modulator of Apoptosis Induction Mediates Acetaminophen-Induced Necrosis and Liver Injury in Mice. Hepatology. 2019; 69: 2164–2179. doi: 10.1002/hep.30422.

80. Wang X, Du H, Shao S et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology. 2018; 68: 62–77. doi: 10.1002/hep.29788.

81. Laker RC, Taddeo EP, Akhtar YN, Zhang M, Hoehn KL, Yan Z. The mitochondrial permeability transition pore regulator cyclophilin D exhibits tissue-specific control of metabolic homeostasis. PLoS One. 2016; 11: e0167910. doi: 10.1371/journal.pone.0167910.

82. Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol. 2018; 15: 738–752. doi: 10.1038/s41575- 018-0065-y.

83. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology. 2013; 57: 1773–1783. doi: 10.1002/hep.26200.

84. Murphy JM, Vince JE. Post-Translational Control of RIPK3 and MLKL Mediated Necroptotic Cell Death. F1000Research. 2015. doi: 10.12688/f1000research.7046.1.

85. Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al. Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase. Cell. 2012; 148: 213–227. doi: 10.1016/j.cell.2011.11.031.

86. Newton K, Manning G. Necroptosis and Inflammation. Annu Rev Biochem. 2016; 85: 743–763. doi: 10.1146/ annurev-biochem-060815-014830.

87. Dara L, Liu ZX, Kaplowitz N. Questions and Controversies: The Role of Necroptosis in Liver Disease. Cell Death Discov. 2016. doi: 10.1038/cddiscovery.2016.89.

88. Dara L. The Receptor Interacting Protein Kinases in the Liver. Semin Liver Dis. 2018; 38: 73–86. doi: 10.1055/ s-0038-1629924.

89. Kaplowitz N, Win S, Than TA, Liu ZX, Dara L. Targeting Signal Transduction Pathways which Regulate Necrosis in Acetaminophen Hepatotoxicity. J Hepatol. 2015: 5–7. doi: 10.1016/j.jhep.2015.02.050.

90. Günther C, He GW, Kremer AE, Murphy JM, Petrie EJ, Amann K et al. The Pseudokinase MLKL Mediates Programmed Hepatocellular Necrosis Independently of RIPK3 during Hepatitis. J Clin Investig. 2016; 126: 4346–4360. doi: 10.1172/JCI87545.

91. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F et al. TRAIL Induces Necroptosis Involving RIPK1/ RIPK3-Dependent PARP-1 Activation. Cell Death Differ. 2012; 19: 2003–2014. doi: 10.1038/cdd.2012.90.

92. Arshad MI, Piquet-Pellorce C, Filliol A, L’Helgoualc’h A, Lucas-Clerc C, Jouan-Lanhouet S et al. The Chemical Inhibitors of Cellular Death, PJ34 and Necrostatin-1, down-Regulate IL-33 Expression in Liver. J Mol Med. 2015; 93: 867–878. doi: 10.1007/s00109- 015-1270-6.

93. Zhou Y, Dai W, Lin C, Wang F, He L, Shen M et al. Protective Effects of Necrostatin-1 against Concanavalin A-Induced Acute Hepatic Injury in Mice. Mediat Inflamm. 2013; doi: 10.1155/2013/706156.

94. Hamon A, Piquet-Pellorce C, Dimanche-Boitrel MT, Samson M, Le Seyec J. Intrahepatocytic Necroptosis Is Dispensable for Hepatocyte Death in Murine ImmuneMediated Hepatitis. J Hepatol. 2020: 699–701. doi: 10.1016/j.jhep.2020.05.016.

95. Chen L, Cao Z, Yan L, Ding Y, Shen X, Liu K et al. Circulating Receptor-Interacting Protein Kinase 3 Are Increased in HBV Patients with Acute-on-Chronic Liver Failure and Are Associated with Clinical Outcome. Front Physiol. 2020; 11. doi: 10.3389/fphys.2020.00526.

96. Han L, Teng Y, Fan Y, Gao S, Li F, Wang K. ReceptorInteracting Protein Kinase 3 (RIPK3) MRNA Levels Are Elevated in Blood Mononuclear Cells of Patients with Poor Prognosis of Acute-on-Chronic Hepatitis B Liver Failure. Tohoku J Exp Med. 2019; 247: 237–245. doi: 10.1620/tjem.247.237.

97. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B et al. Pathogen Blockade of TAK1 Triggers Caspase-8– Dependent Cleavage of Gasdermin D and Cell Death. Science. 2018; 362: 1064–1069. doi: 10.1126/science. aau2818.

98. Man SM, Kanneganti TD. Regulation of Inflammasome Activation. Immunol Rev. 2015: 6–21. doi: 10.1111/ imr.12296.

99. Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-Mediated Pyroptotic and Apoptotic Cell Death, and Defense against Infection. Curr Opin Microbiol. 2013: 319–326. doi: 10.1016/j.mib.2013.04.004.

100. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019; 20: 3328. doi: 10.3390/ijms20133328.

101. Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms. Aging Dis. 2019; 10: 1094–1108. doi: 10.14336/ AD.2019.0116.

102. Petrasek J, Iracheta-Vellve A, Saha B, Satishchandran A, Kodys K, Fitzgerald KA et al. Metabolic Danger Signals, Uric Acid and ATP, Mediate Inflammatory Cross-Talk between Hepatocytes and Immune Cells in Alcoholic Liver Disease. J Leukoc Biol. 2015; 98: 249– 256. doi: 10.1189/jlb.3AB1214-590R.

103. Heo MJ, Kim TH, You JS, Blaya D, Sancho-Bru P, Kim SG. Alcohol Dysregulates MiR-148a in Hepatocytes through FoxO1, Facilitating Pyroptosis via TXNIP Overexpression. Gut. 2019; 68: 708–720. doi: 10.1136/ gutjnl-2017-315123.

104. Beier JI, Banales JM. Pyroptosis: An Inflammatory Link between NAFLD and NASH with Potential Therapeutic Implications. J Hepatol. 2018: 643–645. doi: 10.1016/j.jhep.2018.01.017.

105. Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X et al. Gasdermin D Plays a Key Role as a Pyroptosis Executor of Non-Alcoholic Steatohepatitis in Humans and Mice. J Hepatol. 2018; 68: 773–782. doi: 10.1016/j. jhep.2017.11.040.

106. Mehal WZ. The Inflammasome in Liver Injury and Non-Alcoholic Fatty Liver Disease. Dig Dis. 2014; 32: 507–515. doi: 10.1159/000360495.

107. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM et al. NLRP3 Inflammasome Blockade Reduces Liver Inflammation and Fibrosis in Experimental NASH in Mice. J Hepatol. 2017; 66: 1037–1046. doi: 10.1016/j.jhep.2017.01.022.

108. Williams CD, Farhood A, Jaeschke H. Role of Caspase-1 and Interleukin-1β in Acetaminophen-Induced Hepatic Inflammation and Liver Injury. Toxicol Appl Pharmacol. 2010; 247: 169–178. doi: 10.1016/j. taap.2010.07.004.

109. Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A, Williams DP et al. Role of the Nalp3 Inflammasome in Acetaminophen-Induced Sterile Inflammation and Liver Injury. Toxicol Appl Pharmacol. 2011; 252: 289–297. doi: 10.1016/j.taap.2011.03.001.

110. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W et al. Macrophage-Derived IL-1α Promotes Sterile Inflammation in a Mouse Model of Acetaminophen Hepatotoxicity. Cell Mol Immunol. 2018; 15: 973–982. doi: 10.1038/cmi.2017.22.

111. Luan J, Zhang X, Wang S, Li Y, Fan J, Chen W et al. NOD-like Receptor Protein 3 Inflammasome-Dependent IL-1β Accelerated ConA-Induced Hepatitis. Front Immunol. 2018; 9. doi: 10.3389/fimmu.2018.00758.

112. Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y. Interleukin-10 Secreted by Mesenchymal Stem Cells Attenuates Acute Liver Failure through Inhibiting Pyroptosis. Hepatol Res. 2018; 48: E194–E202. doi: 10.1111/ hepr.12969.

113. Lan P, Fan Y, Zhao Y, Lou X, Monsour HP, Zhang X et al. TNF Superfamily Receptor OX40 Triggers Invariant NKT Cell Pyroptosis and Liver Injury. J Clin Investig. 2017; 127: 2222–2234. doi: 10.1172/JCI91075.

114. Maroni L, Agostinelli L, Saccomanno S, Pinto C, Giordano DM, Rychlicki C et al. Nlrp3 Activation Induces Il-18 Synthesis and Affects the Epithelial Barrier Function in Reactive Cholangiocytes. Am J Pathol. 2017; 187: 366–376. doi: 10.1016/j.ajpath.2016.10.010.

115. Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C et al. Chenodeoxycholic Acid Activates NLRP3 Inflammasome and Contributes to Cholestatic Liver Fibrosis. Oncotarget. 2016; 7: 83951–83963. doi: 10.18632/oncotarget.13796.

116. Liao L, Schneider KM, Galvez EJC, Frissen M, Marschall HU, Su H et al. Intestinal Dysbiosis Augments Liver Disease Progression via NLRP3 in a Murine Model of Primary Sclerosing Cholangitis. Gut. 2019; 68: 1477–1492. doi: 10.1136/gutjnl-2018-316670.

117. Xu WF, Zhang Q, Ding CJ, Sun HY, Che Y, Huang H et al. Gasdermin E-Derived Caspase-3 Inhibitors Effectively Protect Mice from Acute Hepatic Failure. Acta Pharmacol Sin. 2020. doi: 10.1038/s41401-020-0434-2.

118. Serti E, Werner JM, Chattergoon M, Cox AL, Lohmann V, Rehermann B. Monocytes Activate Natural Killer Cells via Inflammasome-Induced Interleukin 18 in Response to Hepatitis C Virus Replication. Gastroenterology. 2014; 147. doi: 10.1053/j.gastro.2014.03.046.

119. Yu X, Lan P, Hou X, Han Q, Lu N, Li T et al. HBV Inhibits LPS-Induced NLRP3 Inflammasome Activation and IL-1β Production via Suppressing the NF-ΚB Pathway and ROS Production. J Hepatol. 2017; 66: 693–702. doi: 10.1016/j.jhep.2016.12.018.

120. Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016: 165–176. doi: 10.1016/j.tcb.2015.10.014.

121. Mao L, Zhao T, Song Y, Lin L, Fan X, Cui B et al. The Emerging Role of Ferroptosis in Non-Cancer Liver Diseases: Hype or Increasing Hope? Cell Death Dis. 2020. doi: 10.1038/s41419-020-2732-5.

122. Doll S, Conrad M. Iron and Ferroptosis: A Still IllDefined Liaison. IUBMB Life. 2017; 69: 423–434. doi: 10.1002/iub.1616.

123. Capelletti MM, Manceau H, Puy H, Peoc’h K. Ferroptosis in Liver Diseases: An Overview. Int J Mol Sci. 2020; 21: 4908. doi: 10.3390/ijms21144908.

124. Yang WS, Sriramaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al. Regulation of Ferro- ptotic Cancer Cell Death by GPX4. Cell. 2014; 156: 317–331. doi: 10.1016/j.cell.2013.12.010.

125. Xie Y, Hou W, Song X et al. Ferroptosis: process and function. Cell Death Differ. 2016; 23: 369–379. doi: 10.1038/cdd.2015.158.

126. Zhou Z, Ye TJ, Bonavita G, Daniels M, Kainrad N, Jogasuria A, You M. Adipose-Specific Lipin-1 Overexpression Renders Hepatic Ferroptosis and Exacerbates Alcoholic Steatohepatitis in Mice. Hepatol Commun. 2019; 3: 656–669. doi: 10.1002/hep4.1333.

127. Zhou Z, Ye TJ, DeCaro E, Buehler B, Stahl Z, Bonavita G et al. Intestinal SIRT1 Deficiency Protects Mice from Ethanol-Induced Liver Injury by Mitigating Ferroptosis. Am J Pathol. 2020; 190: 82–92. doi: 10.1016/j. ajpath.2019.09.012.

128. Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ. Reclassifying Hepatic Cell Death during Liver Damage: Ferroptosis-A Novel Form of Non-Apoptotic Cell Death? Int J Mol Sci. 2020 Feb 28; 21 (5): 1651. doi: 10.3390/ ijms21051651.

129. Qi J, Kim JW, Zhou Z, Lim CW, Kim B. Ferroptosis Affects the Progression of Nonalcoholic Steatohepatitis via the Modulation of Lipid Peroxidation–Mediated Cell Death in Mice. Am J Pathol. 2020; 190: 68–81. doi: 10.1016/j.ajpath.2019.09.011.

130. Wang M, Liu CY, Wang T, Yu HM, Ouyang SH, Wu YP et al. (+)-Clausenamide Protects against Drug-Induced Liver Injury by Inhibiting Hepatocyte Ferroptosis. Cell Death Dis. 2020; 11. doi: 10.1038/s41419-020-02961-5. 131. Yamada N, Karasawa T, Kimura H, Watanabe S, Komada T, Kamata R et al. Ferroptosis Driven by Radical Oxidation of N-6 Polyunsaturated Fatty Acids Mediates Acetaminophen-Induced Acute Liver Failure. Cell Death Dis. 2020; 11. doi: 10.1038/s41419-020-2334-2. 132. Yamada N, Karasawa T, Takahashi M. Role of Ferroptosis in Acetaminophen-Induced Hepatotoxicity. Arch Toxicol. 2020: 1769–1770. doi: 10.1007/s00204-020- 02714-5.

131. Zeng T, Deng G, Zhong W, Gao Z, Ma S, Mo C et al. Indoleamine 2,3-Dioxygenase 1 enhanceshepatocytes Ferroptosis in Acute Immune Hepatitis Associated with Excess Nitrative Stress. FreeRadicBiol Med. 2020; 152: 668–679. doi: 10.1016/j.freeradbiomed.2020.01.009.

132. Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L et al. Caveolin-1 Dictates Ferroptosis in the Execution of Acute Immune-Mediated Hepatic Damage by Attenuating Nitrogen Stress. Free Radic Biol Med. 2020; 148: 151– 161. doi: 10.1016/j.freeradbiomed.2019.12.026.

133. Wang Y, An R, Umanah GK et al. A nuclease that mediates cell death induced by DNA damage and poly (ADPribose) polymerase-1. Science. 2016; 354. doi: 10.1126/ science.aad6872. aad6872.

134. Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis. 2014; 5: e1230. doi: 10.1038/cddis.2014.202.

135. Sun Q, Luo T, Ren Y et al. Competition between human cells by entosis. Cell Res. 2014; 24: 1299–1310. doi: 10.1038/cr.2014.138.

136. Hamann JC, Surcel A, Chen R et al. Entosis is induced by glucose starvation. Cell Rep. 2017; 20: 201–210. doi: 10.1016/j.celrep.2017.06.037.

137. Sierro F, Tay SS, Warren A et al. Suicidal emperipolesis: a process leading to cell-in-cell structures, T cell clearance and immune homeostasis. Curr Mol Med. 2015; 15: 819–827. doi: 10.2174/1566524015666151026102 143.

138. Shi J, Zhao J, Zhang X et al. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-beta-dependent emperipolesis in HBV cirrhotic patients. Sci Rep. 2017; 7: 44544. doi: 10.1038/ srep44544.

139. Hitomi J, Christofferson DE, Ng A et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008; 135: 1311– 1323. doi: 10.1016/j.cell.2008.10.044.

140. Conos SA, Chen KW, De Nardo D et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA. 2017; 114: E961– E969. doi: 10.1073/pnas.1613305114.

141. Chung H, Vilaysane A, Lau A et al. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ. 2016; 23: 1331–1346. doi: 10.1038/cdd.2016.14.

142. Маслов ЛН, Нарыжная НВ, Семенцов АС, Мухомедзян АВ, Горбунов АС. Влияние посткондиционирования сердца на некроз, апоптоз, онкоз и аутофагию кардиомиоцитов. Патофизиология и экспериментальная терапия. 2016; 60 (2): 94–100.

143. Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2019 Jan; 109: 2043–2053. doi: 10.1016/j.biopha.2018.11.030.

144. El-Kashef DH, Abdelrahman RS. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol. 2020 Apr 15; 393: 114931. doi: 10.1016/j.taap.2020.114931.

145. Zhang M, Wu P, Li M, Guo Y, Tian T, Liao X, Tan S. Inhibition of Notch1 signaling reduces hepatocyte injury in nonalcoholic fatty liver disease via autophagy. Biochem Biophys Res Commun. 2021 Apr 2; 547: 131–138. doi: 10.1016/j.bbrc.2021.02.039.

146. Peng Z, Liao Y, Wang X, Chen L, Wang L, Qin C et al. Heme oxygenase-1 regulates autophagy through carbon-oxygen to alleviate deoxynivalenol-induced hepatic damage. Arch Toxicol. 2020 Feb; 94 (2): 573–588. doi: 10.1007/s00204-019-02649-6.

147. Yu X, Hao M, Liu Y, Ma X, Lin W, Xu Q et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activati- on via mitophagy. Eur J Pharmacol. 2019 Dec 1; 864: 172715. doi: 10.1016/j.ejphar.2019.172715.

148. Hongming Lv, Liu Y, Zhang B, Zheng Y, Ji H, Li S. The improvement effect of gastrodin on LPS/GalNinduced fulminant hepatitis via inhibiting inflammation and apoptosis and restoring autophagy. Int Immunopharmacol. 2020 Aug; 85: 106627. doi: 10.1016/j.intimp.2020.106627.

149. Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Devel Ther. 2019 Aug 19; 13: 2887–2897. doi: 10.2147/DDDT.S220190.

150. Pervaiz S, Bellot G L, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. Int Rev Cell Mol Biol. 2020; 352: 189–214. doi: 10.1016/bs.ircmb.2020.03.002.

151. Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K et al. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiencyinduced fatty liver disease. Eur J Pharmacol. 2019 Apr 5; 848: 39–48. doi: 10.1016/j.ejphar.2019.01.043.

152. Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(–/–) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci. 2021 Jan 15; 22 (2): 818. doi: 10.3390/ijms22020818.

153. Beer L, Mildner M, Gyöngyösi M, Ankersmit HJ. Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis. 2016, 21: 1336–1353. doi: 10.1007/ s10495-016-1292-8.

154. He YT, Qi YN, Zhang BQ, Li JB, Bao J. Bioartificial liver support systems for acute liver failure: A systematic review and meta-analysis of the clinical and preclinical literature. World J Gastroenterol. 2019 Jul 21; 25 (27): 3634–3648. doi: 10.3748/wjg.v25.i27.3634.

155. Weng J, Han X, Zeng F, Zhang Y, Feng L, Cai L et al. Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs. Theranostics. 2021; 11 (16): 7620–7639. doi: 10.7150/ thno.58515.

156. Шагидулин МЮ, Онищенко НА, Басок ЮБ, Григорьев АМ, Кириллова АД, Немец ЕА и др. Функциональная эффективность клеточно-инженерной конструкции печени на основе тканеспецифического матрикса (экспериментальная модель хронической печеночной недостаточности). Вестник трансплантологии и искусственных органов. 2020; 22 (4): 89–97.

157. Онищенко НА, Фоменко ЕВ, Никольская АО, Гоникова ЗЗ, Шагидулин МЮ, Балясин МВ и др. К механизму активации восстановительных процессов в печени при использовании общей РНК клеток костного мозга. Вестник трансплантологии и искусственных органов. 2020; 22 (3): 134–142.


Рецензия

Для цитирования:


Онищенко Н.А., Гоникова З.З., Никольская А.О., Кирсанова Л.А., Севастьянов В.И. Программируемая гибель клеток и заболевания печени. Вестник трансплантологии и искусственных органов. 2022;24(1):72-88. https://doi.org/10.15825/1995-1191-2022-1-72-88

For citation:


Onishchenko N.A., Gonikova Z.Z., Nikolskaya A.O., Kirsanova L.A., Sevastianov V.I. Programmed cell death and liver diseases. Russian Journal of Transplantology and Artificial Organs. 2022;24(1):72-88. (In Russ.) https://doi.org/10.15825/1995-1191-2022-1-72-88

Просмотров: 81


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)