Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Патогенетические механизмы, эпидемиология и классификация острого повреждения почек у реципиентов сердечного трансплантата

https://doi.org/10.15825/1995-1191-2021-2-147-157

Полный текст:

Аннотация

Повреждение почек у реципиентов сердечного трансплантата имеет сложную природу и несет в себе черты всех типов нарушения кардиоренального взаимодействия. Предшествующая трансплантации почечная дисфункция, острое повреждение почек в периоперационном периоде, а также факторы, связанные с трансплантатом и иммуносупрессией, определяют распространенность и тяжесть патологии почек в этой группе больных. В данном обзоре рассмотрены патофизиология нарушения функции почек при сердечной недостаточности, эпидемиология и классификации острого повреждения почек.

Об авторах

Я. Л. Поз
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Поз Яков Львович

123182, Москва, ул. Щукинская, д. 1



А. Г. Строков
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



В. Н. Попцов
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



А. О. Шевченко
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет); ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России
Россия

Москва



С. В. Готье
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



Список литературы

1. Dasta JF, Kane-Gill S. Review of the Literature on the Costs Associated With Acute Kidney Injury. J Pharm Pract. 2019 Jun; 32 (3): 292–302. doi: 10.1177/0897190019852556.

2. Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong. Intensive Care Med. 2008; 34 (5): 957–962. doi: 10.1007/s00134-008-1017-8.

3. Ronco C, Bellasi A, Di Lullo L. Cardiorenal Syndrome: An Overview. Adv Chronic Kidney Dis. 2018; 25 (5): 382–390. doi: 10.1053/j.ackd.2018.08.004.

4. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007; 13: 422–430. doi: 10.1016/j.cardfail.2007.03.011.

5. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009; 53: 582–588. doi: 10.1016/j.jacc.2008.08.080.

6. Damman K, Voors AA, Hillege HL, Navis G, Lechat P, van Veldhuisen DJ et al. Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail. 2010; 12: 974–982. doi: 10.1093/eurjhf/hfq118.

7. Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008; 51: 1268–1274. doi: 10.1016/j.jacc.2007.08.072.

8. Hanberg JS, Sury K, Wilson FP, Brisco MA, Ahmad T, Ter Maaten JM et al. Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure. J Am Coll Cardiol. 2016; 67 (19): 2199–2208. doi: 10.1016/j.jacc.2016.02.058.

9. Guglin M, Rivero A, Matar F, Garcia M. Renal dysfunction in heart failure is due to congestion but not low output. Clin Cardiol. 2011; 34: 113–116. doi: 10.1002/clc.20831.

10. Maeder MT, Holst DP, Kaye DM. Tricuspid regurgitation contributes to renal dysfunction in patients with heart failure. J Card Fail. 2008; 14: 824–830.

11. Priebe HJ, Heimann JC, Hedley-Whyte J. Effects of renal and hepatic venous congestion on renal function in the presence of low and normal cardiac output in dogs. Circ Res. 1980; 47: 883–890. doi: 10.1161/01.res.47.6.883.

12. Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007; 9: 872–878. doi: 10.1016/j.ejheart.2007.05.010.

13. Uthoff H, Breidthardt T, Klima T, Aschwanden M, Arenja N, Socrates T et al. Central venous pressure and impaired renal function in patients with acute heart failure. Eur J Heart Fail. 2011; 13: 432–439. doi: 10.1093/eurjhf/hfq195.

14. Blankstein R, Bakris GL. Renal hemodynamic changes in heart failure. Heart Fail Clin. 2008; 4 (4): 411–423. doi: 10.1016/j.hfc.2008.03.006.

15. Sambandam KK. Effective use of loop diuretics in heart failure exacerbation: a nephrologist’s view. Am J Med Sci. 2014; 347: 139–145. doi: 10.1097/MAJ.0b013e31828a2962.

16. Ruggenenti P, Remuzzi G. Worsening kidney function in decompensated heart failure: treat the heart, don’t mind the kidney. Eur Heart J. 2011; 32: 2476–2478. doi: 10.1093/eurheartj/ehr242.

17. Schrier RW. Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol. 2006; 47: 1–8. doi: 10.1016/j.jacc.2005.07.067.

18. Guazzi M, Gatto P, Giusti G, Pizzamiglio F, Previtali I, Vignati C, Arena R. Pathophysiology of cardiorenal syndrome in decompensated heart failure: role of lung-right heart-kidney interaction. Int J Cardiol. 2013; 169: 379– 384. doi: 10.1016/j.ijcard.2013.09.014.

19. Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF. Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma. 2000; 49: 621–626; discussion 626–627. doi: 10.1097/00005373-200010000-00008.

20. Bloomfield GL, Blocher CR, Fakhry IF, Sica DA, Sugerman HJ. Elevated intraabdominal pressure increases plasma renin activity and aldosterone levels. J Trauma. 1997; 42: 997–1004; discussion 1004–1005. doi: 10.1097/00005373-199706000-00002.

21. Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982 Nov; 196 (5): 594–597. doi: 10.1097/00000658-198211000-00015.

22. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WHW, Mullens W. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013; 62: 485–495. doi: 10.1016/j.jacc.2013.04.070.

23. Sandek A, Rauchhaus M, Anker SD, von Haehling S. The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care. 2008; 11: 632–639. doi: 10.1097/MCO.0b013e32830a4c6e.

24. Sandek A, Anker SD, von Haehling S. The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab. 2009; 10 (1): 22–28. doi: 10.2174/138920009787048374.

25. Ross EA. Congestive renal failure: the pathophysiology and treatment of renal venous hypertension. J Card Fail. 2012; 18: 930–938. doi: 10.1016/j.cardfail.2012.10.010.

26. Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J. 2014; 35: 448–454. doi: 10.1093/eurheartj/eht456.

27. Iwata K, Matsuno K, Murata A, Zhu K, Fukui H, Ikuta K et al. Up-regulation of NOX1/NADPH oxidase following drug-induced myocardial injury promotes cardiac dysfunction and fibrosis. Free Radic Biol Med. 2018; 120: 277–288. doi.org/10.1016/j.freeradbiomed.2018.03.053.

28. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clin Kidney J. 2016; 9 (1): 39–47. doi: 10.1093/ckj/sfv124.

29. Rockey DC, Bell PD, Hill JA. Fibrosis: a common pathway to organ injury and failure. N Engl J Med. 2015; 372: 1138–1149. doi: 10.1056/NEJMra1300575.

30. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016; 118: 1021–1040. doi: 10.1161/CIRCRESAHA.115.306565.

31. Calvier L, Martinez-Martinez E, Miana M, Cachofeiro V, Rousseau E, Sádaba JR et al. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail. 2015; 3: 59–67. doi: 10.1016/j.jchf.2014.08.002.

32. Lattenist L, Lechner SM, Messaoudi S, Le Mercier A, El Moghrabi S, Prince S et al. Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury-mediated chronic kidney disease: role of oxidative stress. Hypertension. 2017; 69: 870–878. doi: 10.1161/HYPERTENSIONAHA.116.08526.

33. Segev DL, Muzaale AD, Caffo BS, Mehta SH, Singer AL, Taranto SE et al. Perioperative mortality and long-term survival following live kidney donation. JAMA. 2010; 303: 959–966. doi: 10.1001/jama.2010.237.

34. Mjøen G, Hallan S, Hartmann A, Foss A, Midtvedt K, Øyen O et al. Long-term risks for kidney donors. Kidney Int. 2014; 86: 162–167. doi: 10.1038/ki.2013.460.

35. Moody WE, Ferro CJ, Edwards NC, Chue CD, Lin EL, Taylor RJ et al. CRIB-Donor Study Investigators. Cardiovascular effects of unilateral nephrectomy in living kidney donors. Hypertension. 2016; 67: 368–377. doi: 10.1161/HYPERTENSIONAHA.115.06608.

36. Paoletti E, Bellino D, Signori A, Pieracci L, Marsano L, Russo R et al. Regression of asymptomatic cardiomyopathy and clinical outcome of renal transplant recipients: a long-term prospective cohort study. Nephrol Dial Transplant. 2016; 31: 1168–1174. doi: 10.1093/ndt/gfv354.

37. Шевченко ОП, Улыбышева АА, Гичкун ОЕ, Можейко НП, Стаханова ЕА, Кван ВС, Шевченко АО. Га лектин-3 при отторжении и фиброзе трансплантированного сердца. Вестник трансплантологии и искусственных органов. 2019; 21 (3): 62–68. doi: 10.15825/1995-1191-2019-3-62-68.

38. Tarjus A, Martínez-Martínez E, Amador C, Latouche C, El Moghrabi S, Berger T et al. Neutrophil gelatinaseassociated lipocalin, a novel mineralocorticoid biotarget, mediates vascular profibrotic effects of mineralocorticoids. Hypertension. 2015; 66: 158–166. doi: 10.1161/HYPERTENSIONAHA.115.05431.

39. Martínez-Martínez E, Cachofeiro V, Rousseau E, Álvarez V, Calvier L, Fernández-Celis A et al. Interleukin-33/ ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Mol Cell Endocrinol. 2015; 411: 20–27. doi: 10.1016/j.mce.2015.04.007.

40. López-Andrés N, Rousseau A, Akhtar R, Calvier L, Iñigo C, Labat C et al. Cardiotrophin 1 is involved in cardiac, vascular, and renal fibrosis and dysfunction. Hypertension. 2012; 60: 563–573. doi: 10.1161/HYPERTENSIONAHA.112.194407.

41. Vives M, Hernandez A, Parramon F, Estanyol N, Pardina B, Muñoz A et al. Acute kidney injury after cardiac surgery: prevalence, impact and management challenges. Int J Nephrol Renovasc Dis. 2019; 12: 153–166. doi: 10.2147/IJNRD.S167477.

42. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017; 13 (4): 241–257. doi: 10.1038/nrneph.2017.2.

43. Ostermann M, Cerda J. The burden of acute kidney injury and related financial issues. In: Ding X, Rosner MH, Ronco C, eds. Acute Kidney Injury – Basic Research and Clinical Practice. Basel, Switzerland: Contrib Nephrol, Karger; 2018: 100–112.

44. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018; 14 (10): 607–625. doi: 10.1038/s41581-018-0052-0.

45. Moore BJ (IBM Watson Health), Torio CM (AHRQ). Acute Renal Failure Hospitalizations, 2005–2014. HCUP Statistical Brief #231. Rockville, MD: Agency for Healthcare Research and Quality; 2017. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb231-Acute-RenalFailure-Hospitalizations.jsp.

46. Kerr M, Bedford M, Matthews B, O’Donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transplant. 2014; 29 (7): 1362–1368. doi: 10.1093/ndt/gfu016.

47. Kuitunen A, Vento A, Suojaranta-Ylinen R, Pettila V. Acute renal failure after cardiac surgery: evaluation of the RIFLE classification. Ann Thorac Surg. 2006; 81: 542–546.

48. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007; 11: R31. doi: 10.1186/cc5713.

49. Kidney disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter Suppl. 2012; 2: 1–138. doi: 10.1038/kisup.2012.1.

50. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015; 26 (9): 2231–2238.

51. Salgado G, Landa M, Masevicius D, Gianassi S, SanRomán JE, Silva L et al. Acute renal failure according to the RIFLE and AKIN criteria: a multicenter study. Med Intensiva. 2014; 38 (5): 271–277. doi: 10.1016/j.medin.2013.04.007.

52. Luo X, Jiang L, Du B, Wen Y, Wang M, Xi X. Beijing Acute Kidney Injury Trial (BAKIT) workgroup. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Critical Care. 2014; 18: R144. doi: 10.1186/cc13977.

53. Yong Z, Pei X, Zhu B, Yuan H, Zhao W. Predictive value of serum cystatin C for acute kidney injury in adults: a meta-analysis of prospective cohort trials. Sci Rep. 2017; 7: 41012. doi: 10.1038/srep41012.

54. Шевченко ОП, Улыбышева АА, Можейко НП, Гичкун ОЕ, Стаханова ЕА, Васильева ВП, Шевченко АО. Диагностическая значимость галектина-3 при патологии миокарда трансплантированного сердца. Вестник трансплантологии и искусственных органов. 2020; 22 (1): 8–15. doi: 10.15825/1995-1191-2020-1-8-15.

55. Schulz C-A, Christensson A, Ericson U, Almgren P, Hindy G, Nilsson PM et al. High level of fasting plasma proenkephalin-a predicts deterioration of kidney function and incidence of CKD. J Am Soc Nephrol. 2017; 28: 291–303. doi: 10.1681/ASN.2015101177.

56. Lin X, Yuan J, Zhao Y, Zha Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. 2015; 28: 7–16. doi: 10.1007/s40620-014-0113-9.

57. Hošková L, Franekova J, Málek I, Kautzner J, Szárszoi O, Jabor A et al. Comparison of Cystatin C and NGAL in Early Diagnosis of Acute Kidney Injury After Heart Transplantation. Ann Transplant. 2016; 21: 329– 245. doi: 10.12659/aot.896700.

58. Великий ДА, Гичкун ОЕ, Шевченко ОП. МикроРНК у реципиентов сердечного трансплантата. Вестник трансплантологии и искусственных органов. 2017; 19 (2): 126–132. https://doi.org/10.15825/1995-1191-2017-2-126-132.

59. Parr SK, Clark AJ, Bian A, Shintani AK, Wickersham NE, Ware LB. et. al. Urinary L-FABP predicts poor out comes in critically ill patients with early acute kidney injury. Kidney Int. 2015; 87: 640–648. doi: 10.1038/ki.2014.301.

60. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transpl. 2009; 24: 3265–3268. doi: 10.1093/ndt/gfp010.

61. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013; 17: R25. doi: 10.1186/cc12503.

62. Teo SH, Zoltán, Endre ZH. Biomarkers in acute kidney injury (AKI). Best Pract Res Clin Anaesthesiol. 2017; 31 (3): 331–344. doi: 10.1016/j.bpa.2017.10.003.

63. Pickering JW, Endre ZH. Bench to bedside: the next steps for biomarkers in acute kidney injury. Am J Physiol – Ren Physiol. 2016; 311: F717–721. doi: 10.1152/ajprenal.00268.2016.

64. Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, Joannidis M. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018; 44: 323–336. doi: 10.1007/s00134- 018-5126-8.

65. Khush KK, Cherikh WS, Chambers DC, Harhay MO, Hayes D Jr, Hsich E et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report – 2019; focus theme: Donor and recipient size match. J Heart Lung Transplant. 2019; 38 (10): 1056–1066. doi: 10.1016/j.healun.2019.08.004.

66. Thongprayoon C, Lertjitbanjong P, Hansrivijit P, Crisafio A, Mao M, Watthanasuntorn K et al. Acute Kidney Injury in Patients Undergoing Cardiac Transplantation: A Meta-Analysis. Medicines (Basel). 2019; 6 (4): 108. doi: 10.3390/medicines6040108.

67. Гольц АМ, Захаревич ВМ. Ретрансплантация сердца. Трансплантология: итоги и перспективы. Под ред. С.В. Готье. М.–Тверь: Триада, 2019: 271–290.

68. Zijlstra LE, Constantinescu AA, Manintveld O, Birim O, Hesselink DA, van Thiel R et al. Improved long-term survival in Dutch heart transplant patients despite increasing donor age: the Rotterdam experience. Transpl Int. 2015; 28: 962–971. doi: 10.1111/tri.12503.

69. Tjahjono R, Connellan M, Granger E. Predictors of Acute Kidney Injury in Cardiac Transplantation. Transplant Proc. 2016; 48 (1): 167–172. doi: 10.1016/j.transproceed.2015.12.006.

70. García-Gigorro R, Renes-Carreño E, Peiretti MAC, López PA, Vela JLP, Rodríguez JG et al. Incidence, Risk Factors and Outcomes of Early Acute Kidney Injury After Heart Transplantation: An 18-year Experience. Transplantation. 2018; 102 (11): 1901–1908. doi: 10.1097/TP.0000000000002293.

71. Wang T-J, Lin C-H, Wei H-J, Wu M-J. Long-Term Outcomes and Risk Factors of Renal Failure Requiring Dialysis after Heart Transplantation: A Nationwide Cohort Study. J Clin Med. 2020, 9 (8), 2455; https://doi.org/10.3390/jcm9082455.

72. Wang L, Wang T, Rushton SN, Parry G, Dark JH, Sheerin NS. The impact of severe acute kidney injury requiring renal replacement therapy on survival and renal function of heart transplant recipients – a UK cohort study. Transpl Int. 2020 Jun 16. doi: 10.1111/tri.13675.

73. Boyle JM, Moualla S, Arrigain S, Worley S, Bakri MH, Starling RC et al. Risks and outcomes of acute kidney injury requiring dialysis after cardiac transplantation. Am J Kidney Dis. 2006; 48 (5): 787–796. doi: 10.1053/j.ajkd.2006.08.002.

74. Guven G, Brankovic M, Constantinescu AA, Brugts JJ, Hesselink DA. Preoperative right heart hemodynamics predict postoperative acute kidney injury after heart transplantation. Intensive Care Med. 2018; 44: 588–597. doi: 10.1007/s00134-018-5159-z.

75. Romeo FJ, Varela CF, Vulcano N, Pizarro R, Greloni G, Posatini R et al. Acute Kidney Injury After Cardiac Transplantation: Foe or Common Innocent Bystander? Transplant Proc. 2018; 50 (5): 1489–1495. doi: 10.1016/j.transproceed.2018.03.106.


Для цитирования:


Поз Я.Л., Строков А.Г., Попцов В.Н., Шевченко А.О., Готье С.В. Патогенетические механизмы, эпидемиология и классификация острого повреждения почек у реципиентов сердечного трансплантата. Вестник трансплантологии и искусственных органов. 2021;23(2):147-157. https://doi.org/10.15825/1995-1191-2021-2-147-157

For citation:


Poz Ya.L., Strokov A.G., Poptsov V.N., Shevchenko A.O., Gautier S.V. Pathogenetic mechanisms, epidemiology and classification of acute kidney injury in heart transplant recipients. Russian Journal of Transplantology and Artificial Organs. 2021;23(2):147-157. (In Russ.) https://doi.org/10.15825/1995-1191-2021-2-147-157

Просмотров: 59


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)