Клетки Сертоли: иммуномодулирующие свойства, способы выделения и культивирования
https://doi.org/10.15825/1995-1191-2021-3-142-147
Аннотация
В связи с осложнениями, обусловленными неизбежным применением иммуносупрессивных препаратов при трансплантации органов и клеток, вызывает интерес использование естественных механизмов обеспечения иммунологической толерантности, выявленных в организмах животных и человека. Давно известно, что в них имеются определенные области, в том числе семенник, где иммунные реакции практически невозможны. В настоящем обзоре основное внимание уделено роли клеток Сертоли, обеспечивающих иммунопривилегированность семенника. Описываются способы изоляции и культивирования клеток Сертоли и обсуждаются возможности их использования в биологии и медицине.
Об авторах
Н. Н. СкалецкийРоссия
Скалецкий Николай Николаевич, главный специалист
123182, Москва, ул. Щукинская, д. 1
Г. Н. Скалецкая
Россия
Скалецкая Галина Николаевна
Москва
Список литературы
1. Le Bas-Bernardet S, Blancho G. Current cellular immunological hurdles in pig-to-primate xenotransplantation. Transpl Immunol. 2009; 21 (2): 60–64.
2. Kaur G, Wright K, Mital P. Neonatal Pig Sertoli Cells Survive Xenotransplantation by Creating an Immune Modulatory Environment Involving CD4 and CD8 Regulatory T Cells. Cell Transplant. 2020 Jan-Dec; 29: 963689720947102.
3. Cooper DKC, Hara H, Iwase H, Yamamoto T, Jagdale A, Kumar V et al. Clinical pig kidney xenotransplantation: how close are we? J Am Soc Nephrol. 2020; 31 (1): 12–21.
4. Stephany BR, Augustine JJ, Krishnamurthi V, Goldfarb DA, Flechner SM, Braun WE et al. Differences in proteinuria and graft function in de novo sirolimusbased vs. calcineurin inhibitor-based immunosuppression in live donor kidney transplantation. Transplantation. 2006; 82 (3): 368–374.
5. Taylor AL, Watson CJ, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005; 56 (1): 23–46.
6. Thompson P, Badell IR, Lowe M, Turner A, Cano J, Avila J et al. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant. 2012; 12 (7): 1765–1775.
7. Vadori M, Cozzi E. Immunological challenges and therapies in xenotransplantation. Cold Spring Harb Perspect Med. 2014; 4 (4): a015578.
8. Yin M, Xie MN. Sertoli Cells Induce Xenolymphocyte Apoptosis In Vitro. Transpl Proc. 2006 Dec; 38 (Issue 10): 3309–3311.
9. Selawry HP, Whittington KB, Bellgrau D. Abdominal intratesticular islet-xenograft survival in rats. Diabetes. 1989; 38: 220.
10. Gou BJI. The Sertoli cell in vivo and in vitro. Cell Biology and Toxicology. 1992; 8 (3): 49–54.
11. Griswold MD, McLean D. The sertoli cell, Knobil and Neill’s physiology of reproduction. 3rd ed. St. Louis, MO: Elsevier Academic Press. 2006: 949–975.
12. Gassei K, Schlatt S. Testicular morphogenesis: Comparison of in vivo and in vitro models to study male gonadal development. Annals of the New York Academy of Sciences. 2007; 1120: 152–167.
13. Griswold MD. Sertoli Cell Biology. Oxford: Elsevier Academic Press; 2015. 469 p.
14. Griswold MD. Spermatogenesis: the commitment to meiosis. Physiol Rev. 2016; 96: 1–17.
15. França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology. 2016; 4: 189–212.
16. França LR, Nobrega RH, Morais RDVS, Assis LHC, Schulz RW, Griswold MD. Sertoli Cell Biology. Pullman, WA: Elsevier; 2015. Sertoli cell structure and function in anamniote vertebrates: 469–469.
17. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004; 25: 747–806.
18. Boulogne B, Habert R, Levacher C. Regulation of the proliferation of cocultured gonocytes and Sertoli cells by retinoids, triiodothyronine, and intracellular signaling factors: differences between fetal and neonatal cells. Mol Reprod Dev. 2003; 65: 194–203.
19. Shamekh R, Newcomb J, Mallery J, Cassady CJ, Saporta S, Cameron DF et al. Survival of rat or mouse ventral mesencephalon neurons after cotransplantation with rat sertoli cells in the mouse striatum. Cell Transplant. 2005; 14: 551–564.
20. Dufour JM, Rajotte RV, Korbutt GS, Emerich DF. Harnessing the immunomodulatory properties of Sertoli cells to enable xenotransplantation in type I diabetes. Immunol Invest. 2003; 32: 275–297.
21. Selawry HP, Cameron DF. Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant. 1993; 2: 123–129.
22. Daoyuan Gong, Chunfu Zhang, Tao Li, Jiahui Zhang, Nannan Zhang, Zehua Tao et al. Are Sertoli cells a kind of mesenchymal stem cells? Am J Transl Res. 2017; 9 (3): 1067–1074.
23. Luca G, Calvitti M, Nastruzzi C, Macchiarulo G, Becchetti E, Neri LM et al. Effects of simulated microgravity on the morphology and function of neonatal porcine cell clusters cultured with and without Sertoli cells. Cell Transplant. 2006; 15 (1): 55–65.
24. Bellgrau D, Gold D, Selawry HP. A role for CD95 ligand in preventing graft rejection. Nature. 1995; 377: 630–632.
25. Cameron DF, Hushen JJ, Nazian SJ. Formation of Sertoli cell-enriched tissue constructs utilizing simulated microgravity technology. Ann NY Acad Sci. 2001 Nov; 944: 420–428.
26. Bernardino RL, Alves MG, Oliveira PF. Establishment of primary culture of Sertoli cells. Methods in Molecular Biology. 2018a; 1748: 1–8.
27. Bernardino RL, Alves MG, Oliveira PF. Evaluation of the purity of Sertoli cell primary cultures. Methods in Molecular Biology. 2018b; 1748: 9–15.
28. Bhushan S, Aslani F, Zhang Z, Sebastian T, Elsässer HP, Klug J. Isolation of Sertoli cells and peritubular cells from rat testes. Journal of Visualized Experiments. 2016; (108): 1–12.
29. Chang YF, Lee-Chang JS, Panneerdoss S, MacLean JA, Rao M. Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. Biotechniques. 2011 Nov; 51 (5): 341–342, 344. doi: 10.2144/000113764.
30. Zomer HD, Reddi PP. Characterization of rodent Sertoli cell primary cultures. Mol Reprod Dev. 2020 Aug; 87 (8): 857–870.
31. Scarpino S, Rita Morena A, Petersen C, Fröysa B, Söder O, Boitani C. A rapid method of Sertoli cell isolation by DSA lectin, allowing mitotic analyses. Molecular and Cellular Endocrinology. 1998; 146 (1–2): 121–127. 3
32. Elliott M, Zheng S, Park D, Woodson RI, Reardon MA, Juncadella IJ et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature. 2010; 467 (7313): 333–337.
33. Li F, Yamaguchi K, Okada K, Matsushita K, Enatsu N, Chiba K, Fujisawa M. Efficient transfection of DNA into primarily cultured rat Sertoli cells by electroporation. Biology of Reproduction. 2013 Mar 14; 88 (3): 61. doi: 10.1095/biolreprod.112.106260. Print 2013 Mar.
34. Monfared M, Akbari M, Kashani IR, Solhjoo S, Tooli H, Omidi A et al. Inductive role of sustentacular cells (Sertoli cells) conditioned medium on bone marrow derived mesenchymal stem cells. International Journal of Morphology. 2017 Dec; 35 (4): 1597–1606.
35. Ahmadi H, Boroujeni ME, Sadeghi Y, Abdollahifar MA, Khodagholi F, Meftahi GH et al. Sertoli cells avert neuroinflammation-induced cell death and improve motor function and striatal atrophy in rat model of Huntington disease. Journal of Molecular Neuroscience. 2018; 65 (1): 17–27.
36. Anway MD, Folmer J, Wright WW, Zirkin BR. Isolation of Sertoli cells from adult rat testes: An approach to ex vivo studies of Sertoli cell function. Biology of Reproduction. 2003; 68 (3): 996–1002.
37. Rich KA, Bardin CW, Gunsalus GL, Mather JP. Agedependent pattern of androgen-binding protein secretion from rat sertoli cells in primary culture. Endocrinology. 1983; 113 (6): 2284–2293.
38. Oresti GM, García-López J, Aveldanõ MI, Del Mazo J. Cell-type-specific regulation of genes involved in testicular lipid metabolism: Fatty acid-binding proteins, diacylglycerol acyltransferases, and perilipin 2. Reproduction. 2013; 146 (5): 471–480.
39. Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Reports. 2013; 3 (6): 2179–2190.
40. Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Sedighi-Gilani M, Mokarizadeh A. Starvation is more efficient than the washing technique for purification of rat Sertoli cells. In Vitro Cellular and Developmental Biology – Animal. 2014; 50 (8): 723–730.
41. Sato Y, Yoshida K, Nozawa S, Yoshiike M, Arai M, Otoi T et al. Establishment of adult mouse Sertoli cell lines by using the starvation method. Reproduction. 2013; 145 (5): 505–516.
42. Gwatkin RBL. The Sertoli cell, edited by Lonnie D. Russell and Michael D. Griswold, Cache River Press, Clearwater, FL, 1993, 826 pp. Molecular Reproduction and Development. 36 (4): 517.
43. Garcia TX, Farmaha JK, Kow S, Hofmann M-C. RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development. 2014; 141 (23): 4468–4478.
44. Halley K, Dyson EL, Kaur G, Mital P, Uong PM, Dass B et al. Delivery of a therapeutic protein by immune-privileged sertoli cells. Cell Transplantation. 2010; 19 (12): 1645–1657.
45. Pineau C, Le Magueresse B, Courtens J-LL, Jégou B. Study in vitro of the phagocytic function of Sertoli cells in the rat. Cell and Tissue Research. 1991; 264 (3): 589– 598.
46. McCabe MJ, Foo CF, Dinger ME, Smooker PM, Stanton PG. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro. Asian Journal of Andrology. 2016; 18 (4): 620–626.
47. Sluka P, O’Donnell L, Bartles JR, Stanton PG. FSH regulates the formation of adherens junctions and ectoplasmic specialisations between rat Sertoli cells in vitro and in vivo. Journal of Endocrinology. 2006; 189: 381–395.
48. Saewu A, Kongmanas K, Raghupathy R, Netherton J, Kadunganattil S, Linton J-JJ. Primary Sertoli cell cultures from adult mice have different properties compared with those derived from 20-day-old animals. Endocrinology. 2020; 161 (1): bqz020.
49. Beattie PJ, Welsh MJ, Brabec MJ. The effect of 2-methoxyethanol and methoxyacetic acid on Sertoli cell lactate production and protein synthesis in vitro. Toxicology and Applied Pharmacology. 1984; 76 (1): 56–61.
50. Cheng CY, Bardin CW. Identification of two testosterone-responsive testicular proteins in Sertoli cell-enriched culture medium whose secretion is suppressed by cells of the intact seminiferous tubule. Journal of Biological Chemistry. 1987; 262 (26): 12768–12779.
51. Zhang H, Liu B, Qiu Y, Fan J. Pure cultures and characterization of yak Sertoli cells. Tissue and Cell. 2013; 45 (6): 414–420.
52. Griswold MD, McLean D. The sertoli cell, Knobil and Neill’s physiology of reproduction. 3rd ed. St. Louis, MO: Elsevier Academic Press. 2006; 1: 949–975.
53. Monaco L, Adamo S, Stefanini M, Conti M. Signal transduction in the sertoli cell: Serum modulation of the response to FSH. Journal of Steroid Biochemistry. 1989; 32: 129–134.
54. Xiong W, Chen Y, Wang H, Wu H, Lu Q, Han D. Gas6 and the Tyro 3 receptor tyrosine kinase subfamily regulate the phagocytic function of Sertoli cells. Reproduction. 2008; 135 (1): 77–87.
55. Skinner MK, Griswold MD. Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biology of Reproduction. 1982; 27 (1): 211–221.
56. Dong YS, Hou WG, Li Y, Liu DB, Hao GZ, Zhang HF. Unexpected requirement for a binding partner of the syntaxin family in phagocytosis by murine testicular Sertoli cells. Cell Death and Differentiation. 2016; 23 (5): 787–800.
57. Doyle TJ, Kaur G, Putrevu SM, Dyson EL, Dyson M, McCunniff WT et al. Immunoprotective properties of primary Sertoli cells in mice: Potential functional pathways that confer immune privilege. Biology of Reproduction. 2012; 86 (1): 1–14.
Рецензия
Для цитирования:
Скалецкий Н.Н., Скалецкая Г.Н. Клетки Сертоли: иммуномодулирующие свойства, способы выделения и культивирования. Вестник трансплантологии и искусственных органов. 2021;23(3):142-147. https://doi.org/10.15825/1995-1191-2021-3-142-147
For citation:
Skaletskiy N.N., Skaletskaya G.N. Sertoli cells: immunomodulatory properties, methods of isolation and culture. Russian Journal of Transplantology and Artificial Organs. 2021;23(3):142-147. https://doi.org/10.15825/1995-1191-2021-3-142-147