Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Сравнительный анализ секреторной способности островков Лангерганса, культивированных с биополимерным коллагенсодержащим гидрогелем и тканеспецифическим матриксом

https://doi.org/10.15825/1995-1191-2019-4-45-53

Полный текст:

Аннотация

Введение. Созданию биомедицинского клеточного продукта – биоинженерной конструкции поджелудочной железы (ПЖ) – препятствуют проблемы, связанные с поддержанием жизнеспособности функционально активных изолированных островков Лангерганса (ОЛ). Сохранению структуры и функции изолированных ОЛ в условиях in vitro и in vivo могут способствовать как биополимерные, так и тканеспецифические матриксы. Наиболее предпочтительные для клеток тканеспецифические матриксы могут быть получены в результате децеллюляризации поджелудочной железы (ДПЖ-матрикс). Цель. Провести сравнительный анализ секреторной функции изолированных ОЛ крысы, культивированных в присутствии биополимерного коллагенсодержащего гидрогеля (БМКГ) и тканеспецифического ДПЖ-матрикса соответственно. Материалы и методы. ОЛ из ПЖ крысы выделяли, используя классическую коллагеназную технику с некоторыми модификациями. ОЛ культивировали в присутствии БМКГ- и тканеспецифического матрикса в стандартных условиях. Тканеспецифический ДПЖ-матрикс получали в результате децеллюляризации ПЖ крысы. ДПЖ-матрикс был исследован на цитотоксичность, присутствие ДНК и подвергнут морфологическому изучению. Секреторную функцию ОЛ исследовали методом иммуноферментного анализа (ИФА). Результаты. Было показано, что секреторная функция островков, культивированных в присутствии БМКГи ДПЖ-матрикса, значительно выше, чем в монокультуре островков. Выявлено преимущество применения тканеспецифического ДПЖ-матрикса при создании биоинженерной конструкции ПЖ по сравнению с БМКГ-матриксом. Заключение. БМКГ и тканеспецифический ДПЖ-матриксы способствуют не только сохранению жизнеспособности изолированных ОЛ, но и пролонгированию их секреторной способности в течение 10 дней, по сравнению с монокультурой ОЛ.

Об авторах

Н. В. Баранова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Баранова Наталья Владимировна

123182, Москва, ул. Щукинская, д. 1.
Тел.: (499) 190-42-66, (917) 568-98-22



Л. А. Кирсанова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


А. С. Пономарева
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


Е. А. Немец
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


Ю. Б. Басок
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


Г. Н. Бубенцова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


В. А. Сургученко
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


В. И. Севастьянов
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия
Москва


Список литературы

1. Kumar N, Joisher H, Ganguly A. Polymeric scaffolds for pancreatic tissue engineering: a review. Rev Diabet Stud. 2018 Winter; 14 (4): 334–353. doi: 10.1900/RDS.2017.14.334.

2. Lemos NE, de Almeida Brondani L, Dieter C, Rheinheimer J, Boucas AP, BauermannLeitao C et al. Use of additives, scaffolds and extracellular matrix components for improvement of human pancreatic islet outcomes in vitro: a systematic review. Islets. 2017 Sep 3; 9 (5): 73–86. doi: 10.1080/19382014.2017.1335842.

3. Llacua LA, Faas MM, de Vos P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia. 2018 Jun; 61 (6): 1261–1272. doi: 10.1007/s00125-017-4524-8.

4. Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplantation. 2009; 18 (1): 1–12. doi: 10.3727/096368909788237195.

5. Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environmentsfor cell growth. Tissue Engineering. 2014; Part A, 20 (5, 6): 895–898. doi: 10.1089/ten.tea.2013.0765.

6. Coronel M, Stabler C. Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol. 2013; 24: 900–908. doi: 10.1016/j.copbio.2013.05.004.

7. Jiang K, Chaimov D, Patel SN, Liang JP, Wiggins SC, Samojlik MM et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterial. 2019 Apr; 198: 37–48. doi: 10.1016/j.biomaterials.2018.08.057.

8. Перова НВ, Севастьянов ВИ. Биополимерный гетерогенный гидрогель Сферо® ГЕЛЬ – инъекционный биодеградируемый имплант. Практическая медицина. 2014; 8 (84): 111–116.

9. Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A et al. Lung-derived microscaffolds facilitate diabetes reversal after mouse and human intraperitoneal islet transplantation. PLoS One. 2016 May 26; 11 (5): e0156053. doi: 10.1371/journal.pone.0156053.

10. Szebeni GJ, Tancos Z, Feher LZ, Alfoldi R, Kobolak J, Dinnyes A, Puskas LG. Real architecture for 3D Tissue (RAFT) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells. Cytotechnology. 2017; 69 (2): 359–369. doi: 10.1007/s10616-017-0067-6.

11. Баранова НВ, Кирсанова ЛА, Бубенцова ГН, Севастьянов ВИ. Микрогетерогенный коллагенсодержащий гидрогель как матрикс для изолированных островков Лангерганса поджелудочной железы крысы. Гены и клетки. Материалы III Национального конгресса по регенеративной медицине. 2017; XII (3): 38–39.

12. Rana D, Zreigat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med. 2017 Apr; 11 (4): 942–965. doi: 10.1002/term.2061.

13. Napierala H, Hillebrandt K-H, Haep N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine neopancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci Rep. 2017 Feb 2; 7: 41777. doi: 10.1038/srep41777.

14. Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3 D culture of MIN-6 cells on decellularized pancreatic scaffold: in vitro and in vivo study. Biomed Res Int. 2015; 2015: 432645. doi: 10.1155/2015/432645.

15. Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012 Feb; 33 (6): 1771–1781. doi: 10.1016/j.biomaterials.2011/10/054.

16. Smink AM, de Vos P. Therapeutic strategies for modulating the extracellular matrix to improve pancreatic islet function and survival after transplantation. Curr Diab Rep. 2018 May 19; 18 (7): 39. doi: 10.1007/s11892-0181014-4.

17. Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G. Extracellular matrix scaffold technology for bioartificial pancreas engineering: state of the art and future challenges. J Diab Sci Technol. 2014; 8 (1): 159–169. doi: 10.1177/1932296813519558.

18. Mirmalek-Sani S-H, Orlando G, McQuilling J, Pareta R, Mack D, Salvatori M et al. Porcine pancreas extracellular matrix as a platform endocrine pancreas bioengineering. Biomaterials. 2013 July; 34 (22): 5488–5495. doi: 10.1016/j.biomaterials.2013.03.054.

19. Севастьянов ВИ, Шагидулин МЮ, Скалецкий НН, Перова НВ, Довжик ИА, Готье СВ. Доклинические исследования безопасности и эффективности биомедицинских клеточных продуктов для регенерации суставного хряща, печени и поджелудочной железы. Методические рекомендации по проведению доклинических исследований биомедицинских клеточных продуктов. Под ред. ак. В.А. Ткачука. М., 2017: 187–255.

20. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 Apr; 32 (12): 3233–3243. doi: 10.1016/j.biomaterials.2011.01.057.

21. London NJ, Swift SM, Clayton HA. Isolation, culture and functional evaluation of islets of Langerhans. Diabetes Metab. 1998 Jun; 24 (3): 200–207. PMID: 9690051.

22. Pang X, Xue W, Feng X, Tian X, Teng Y, Ding X et al. Experimental studies onislets isolation, purification and function in rats. Int J Clin Exp Med. 2015 Nov 15; 8 (11): 20932–20938. PMID: 26885021.

23. Sigmundsson K, Ojala JRM, Ohmam MK, Osterholm AM, Moreno-Moral A, Domogatskaya A et al. Culturing functional pancreatic islets on 65-laminins and curative transplantation to diabetic mice. Matrix Biol. 2018 Sep; 70: 5–19. doi: 10.1016/j.matbio.2018.03.018.


Для цитирования:


Баранова Н.В., Кирсанова Л.А., Пономарева А.С., Немец Е.А., Басок Ю.Б., Бубенцова Г.Н., Сургученко В.А., Севастьянов В.И. Сравнительный анализ секреторной способности островков Лангерганса, культивированных с биополимерным коллагенсодержащим гидрогелем и тканеспецифическим матриксом. Вестник трансплантологии и искусственных органов. 2019;21(4):45-53. https://doi.org/10.15825/1995-1191-2019-4-45-53

For citation:


Baranova N.V., Kirsanova L.A., Ponomareva A.S., Nemets E.A., Basok Y.B., Bubentsova G.N., Surguchenko V.A., Sevastianov V.I. Comparative analysis of the secretory capacity of islets of langerhans cultured with biopolymer-based collagen-containing hydrogel and tissue-specific matrix. Russian Journal of Transplantology and Artificial Organs. 2019;21(4):45-53. (In Russ.) https://doi.org/10.15825/1995-1191-2019-4-45-53

Просмотров: 131


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)