IN VIVO CONFOCAL MICROENDOSCOPY: FROM THE PROXIMAL BRONCHUS DOWN TO THE PULMONARY ACINUS
https://doi.org/10.15825/1995-1191-2013-2-81-108
Abstract
In vivo endoscopic microscopy aims to provide the clinician with a tool to assess architecture and morphology of a living tissue in real time, with an optical resolution similar to standard histopathology. To date, available microendoscopic devices use the principle of fluorescence confocal microscopy, and thereby mainly analyse the spatial distribution of specific endogenous or exogenous fluorophores. Fluorescence microendoscopes devoted to respiratory system exploration use a bundle of optical fibres, introduced into the working channel of the bron- choscope. This miniprobe can be applied in vivo onto the bronchial inner surface or advanced into a distal bron- chiole down to the acinus, to produce in situ, in vivo microscopic imaging of the respiratory tract in real time. Fluorescence confocal microendoscopy has the capability to image the epithelial and subepithelial layers of the pro- ximal bronchial tree, as well as the more distal parts of the lungs, from the terminal bronchioles down to the alveolar ducts and sacs. Potential applications include in vivo microscopic assessment of early bronchial cancers, bronchial wall remodelling evaluation and diffuse peripheral lung disease exploration, as well as in vivo diagnosis of peripheral lung nodules. The technique has also the potential to be coupled with fluorescence molecular imaging. This chapter de- scribes the capabilities and possible limitations of confocal microendoscopy for proximal and distal lung exploration.
About the Authors
L. ThibervilleM. Salaün
G. Bourg-Heckly
References
1. Kiesslich R., Goetz M., Neurath M.F. Virtual histology // Best Pract Res Clin Gastroenterol. 2008; 22: 883–897.
2. Guillaud M., Richards-Kortum R., Follen M. Paradigm shift: a new breed of pathologist // Gynecol. Oncol. 2007; 107: Suppl. 1, S46–S49.
3. Goetz M., Kiesslich R. Confocal endomicroscopy: in vivo diagnosis of neoplastic lesions of the gastrointesti- nal tract // Anticancer Res. 2008; 28: 353–360.
4. Goetz M., Kiesslich R., Dienes H.P., Drebber U., Murr E., Hoffman A., Kanzler S., Galle P.R., Delaney P., Neurath M.F. In vivo confocal laser endomicroscopy of the human liver: a novel method for assessing liver microarchitecture in real time // Endoscopy. 2008; 40: 554–562.
5. Kiesslich R., Goetz M., Neurath M.F. Confocal laser en- domicroscopy for gastrointestinal diseases // Gastroin- test. Endosc. Clin. N Am. 2008; 18: 451–466.
6. Meining A. Confocal endomicroscopy // Gastrointest. Endosc. Clin. N Am. 2009; 19: 629–635.
7. Thiberville L., Moreno-Swirc S., Vercauteren T., Pel- tier E., Cavé C., Bourg Heckly G. In vivo imaging of the bronchial wall microstructure using fibered confocal flu- orescence microscopy // Am. J. Respir. Crit. Care Med. 2007; 175: 22–31.
8. Thiberville L., Salaün M., Lachkar S., Dominique S., Moreno-Swirc S., Vever-Bizet C., Bourg-Heckly G. Hu- man in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy // Eur. Respir. J. 2009; 33: 974–985.
9. St Croix C.M., Leelavanichkul K., Watkins S.C. Intravital fluorescence microscopy in pulmonary research // Adv. Drug. Deliv. Rev. 2006; 58: 834–840.
10. MacAulay C., Lane P., Richards-Kortum R. In vivo pa- thology: microendoscopy as a new endoscopic imaging modality // Gastrointest. Endosc. Clin. N Am. 2004; 14: 595–620.
11. Boyette L.B., Reardon M.A., Mirelman A.J., Kirkley T.D., Lysiak J.J., Tuttle J.B., Steers W.D. Fiberoptic imaging of cavernous nerves in vivo // J. Urol. 2007; 178: 2694– 2700.
12. Laemmel E., Genet M., Le Goualher G., Perchant A., Le Gargasson J.F., Vicaut E. Fibered confocal fluorescence microscopy (CellviZio) facilitates extended imaging in the field of microcirculation. A comparison with intravi- tal microscopy // J. Vasc. Res. 2004; 41: 400–411.
13. Vincent P., Maskos U., Charvet I., Bourgeais L., Stoppi- ni L., Leresche N., Changeux J.P., Lambert R., Meda P., Paupardin-Tritsch D. Live imaging of neural struc- ture and function by fibred fluorescence microscopy // EMBO Rep. 2006; 7: 1154–1161.
14. Hoffman A., Goetz M., Vieth M., Galle P.R., Neu- rath M.F., Kiesslich R. Confocal laser endomicroscopy: technical status and current indications // Endoscopy. 2006; 38: 1275–1283.
15. Kiesslich R., Goetz M., Vieth M., Galle P.R., Neurath M.F. Confocal laser endomicroscopy // Gastrointest. Endosc. Clin. N Am. 2005; 15: 715–731.
16. Peng Q., Brown S.B., Moan J., Nesland J.M., Wain- wright M., Griffiths J., Dixon B., Cruse-Sawyer J., Ver- non D. Biodistribution of a methylene blue derivative in tumor and normal tissues of rats // J. Photochem. Photo- biol. B. 1993; 20: 63–71.
17. Thiberville L., Salaün M., Lachkar S., Dominique S., Mo-
18. reno-Swirc S., Vever-Bizet C., Bourg-Heckly G. In vivo
19. confocal endomicroscopy of peripheral lung nodules
20. using 488 nm / 660 nm induced fluorescence and topi- 594. cal methylene blue // Eur. Respir. J. 2008; 32: Suppl. 52,
21. s.
22. Thiberville L., Salaün M., Moreno-Swirc S. In vivo en-
23. doscopic microimaging of the bronchial epithelial layer using 660 nm fibered confocal fluorescence microscopy and topical methylene blue // Eur. Respir. J. 2007; 30: Suppl. 51, 712s.
24. Gabrecht T., Andrejevic-Blant S., Wagnieres G. Blue-vi- olet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation // Photochem. Photobiol. 2007; 83: 450–458.
25. Richards-Kortum R., Sevick-Muraca E. Quantitative op- tical spectroscopy for tissue diagnosis // Annu Rev. Phys. Chem. 1996; 47: 555–606.
26. Bourg-Heckly G., Thiberville L., Vever-Bizet C. In vivo endoscopic autofluorescence microspectro-imaging of bronchi and alveoli // Proc SPIE. 2008; 6851.
27. Qu J., MacAulay C., Lam S. Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling and in vivo measurements // Opt. Eng. 1995; 34: 3334–3343.
28. Lane P.M., Lam S., McWilliams A., Leriche J.C., Ander- son M.W., Macaulay C.E. Confocal uorescence microen- doscopy of bronchial epithelium // J. Biomed. Opt. 2009; 14: 024008.
29. Jean F., Bourg-Heckly G., Viellerobe B. Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis // Opt. Express. 2007; 15: 4008– 4017.
30. Becker V., von Delius S., Bajbouj M., Karagianni A., Schmid R.M., Meining A. Intravenous application of fluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-to-imaging time // Gastrointest En- dosc. 2008; 68: 319–323.
31. Kiesslich R., Fritsch J., Holtmann M., Koehler H.H., Stolte M., Kanzler S., Nafe B., Jung M., Galle P.R., Neu- rath M.F. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis // Gastroenterology. 2003; 124: 880–888.
32. Taghavi S.A., Membari M.E., Eshraghian A., Dehgha- ni S.M., Hamidpour L., Khademalhoseini F. Comparison of chromoendoscopy and conventional endoscopy in the detection of premalignant gastric lesions // Can. J. Gast- roenterol. 2009; 23: 105–108.
33. Marion J.F., Waye J.D., Present D.H., Israel Y., Bodi- an C., Harpaz N., Chapman M., Itzkowitz S., Stein- lauf A.F., Abreu M.T., Ullman T.A., Aisenberg J., May- er L. Chromoendoscopy-targeted biopsies are superior to standard colonoscopic surveillance for detecting dyspla- sia in inflammatory bowel disease patients: a prospecti- ve endoscopic trial // Am. J. Gastroenterol. 2008; 103: 2342–2349.
34. Inoue H., Kazawa T., Sato Y., Satodate H., Sasajima K., Kudo S.E., Shiokawa A. In vivo observation of living cancer cells in the esophagus, stomach, and colon using catheter-type contact endoscope, “Endo-Cytoscopy sys- tem” // Gastrointest. Endosc. Clin. N Am. 2004; 14: 589–594
35. Shibuya K., Fujiwara T., Yasufuku K., Alaa M., Chiyo M., Nakajima T., Hoshino H., Hiroshima K., Nakatani Y., Yoshino I. Endo-cytoscopy system is a novel endoscopic technology to visualize microscopic imaging of the tra- cheobronchial tree // Eur. Respir. J. 2008; 32: Suppl. 52, 263s.
36. Mercer R.R., Crapo J.D. Spatial distribution of collagen and elastin fibers in the lungs // J. Appl. Physiol. 1990; 69: 756–765.
37. Weibel E.R., Sapoval B., Filoche M. Design of periphe- ral airways for efficient gas exchange // Respir. Physiol. Neurobiol. 2005; 148: 3–21.
38. Weibel E.R., Hsia C.C., Ochs M. How much is there re- ally? Why stereology is essential in lung morphometry // J. Appl. Physiol. 2007; 102: 459–467.
39. Black P.N., Ching P.S., Beaumont B., Ranasinghe S., Taylor G., Merrilees M.J. Changes in elastic fibres in the small airways and alveoli in COPD // Eur. Respir. J. 2008; 31: 998–1004.
40. Honda T., Ota H., Arai K., Hayama M., Fujimoto K., Yamazaki Y., Haniuda M. Three-dimensional analysis of alveolar structure in usual interstitial pneumonia // Vir- chows Arch. 2002; 441: 47–52.
41. Honda T., Ota H., Sano K. et al. Alveolar shrinkage in bronchioloalveolar carcinoma without central fibrosis // Lung Cancer. 2002; 36: 283–288.
42. Hsu E.R., Gillenwater A.M., Hasan M.Q., Wil- liams M.D., El-Naggar A.K., Richards-Kortum R.R. Real-time detection of epidermal growth factor receptor expression in fresh oral cavity biopsies using a molecu- lar-specific contrast agent // Int. J. Cancer. 2006; 118: 3062–3071.
43. Hsiung P.L., Hardy J., Friedland S., Soetikno R., Du C.B., Wu A.P., Sahbaie P., Crawford J.M., Lowe A.W., Contag C.H., Wang T.D. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal mic- roendoscopy // Nat. Med. 2008; 14: 454–458.
Review
For citations:
Thiberville L., Salaün M., Bourg-Heckly G. IN VIVO CONFOCAL MICROENDOSCOPY: FROM THE PROXIMAL BRONCHUS DOWN TO THE PULMONARY ACINUS. Russian Journal of Transplantology and Artificial Organs. 2013;15(2):81-108. (In Russ.) https://doi.org/10.15825/1995-1191-2013-2-81-108