Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

КОНФОКАЛЬНАЯ МИКРОСКОПИЯ IN VIVO: ОТ ПРОКСИМАЛЬНЫХ БРОНХОВ К АЛЬВЕОЛЯРНОМУ ДЕРЕВУ ЛЕГКИХ

https://doi.org/10.15825/1995-1191-2013-2-81-108

Полный текст:

Аннотация

В условиях in vivo эндоскопическая микроскопия направлена на то, чтобы предоставить врачу средство для оценки архитектуры и морфологии живых тканей в режиме реального времени, обеспечив при этом оптическое разрешение, сходное с разрешением при стандартном гистопатологическом исследовании. На сегодняшний день доступные микроэндоскопические устройства используют принцип флуоресцен- тной конфокальной микроскопии и вследствие этого в основном выполняют анализ пространственного распределения специфических эндогенных или экзогенных флуорофоров. Флуоресцентные микроэндос- копы, предназначенные для исследования дыхательной системы, используют пучок оптоволокон, кото- рый вводится в рабочий канал бронхоскопа. Такой мини-зонд может применяться в условиях in vivo для исследования внутренней поверхности бронхов или продвигаться в дистальные бронхиолы, вплоть до ацинуса, чтобы в условиях in situ, in vivo выполнить микроскопическую визуализацию дыхательных пу- тей в режиме реального времени. Флуоресцентная конфокальная микроэндоскопия дает возможность ви- зуализации эпителиальных и субэпителиальных слоев проксимальных отделов бронхиального дерева, а также дистальных отделов легких, от конечных бронхиол до альвеолярных протоков и альвеол. Потенци- альные области применения включают в себя микроскопическую оценку в условиях in vivo ранних стадий рака бронхов, оценку ремоделирования бронхиальной стенки и исследования диффузных заболеваний периферических отделов легких, а также диагностики in vivo узелковых образований в периферических отделах легких. Данный метод также имеет потенциальную возможность совместного использования с флуоресцентной молекулярной визуализацией. В этой статье описаны возможности и вероятные ограни- чения конфокальной микроэндоскопии для исследования проксимальных и дистальных отделов легких. 

Об авторах

Л. Тибервилль
Клиника Руанского университета


М. Салаун
Клиника Руанского университета LITIS EA 4108 (группа Quant-IF), факультет медицины и фармакологии, Руан


Дж. Бург-Хекли
UMR CNRS 7033, BioMoCeTi, Университет Пьера и Марии Кюри – Paris 6, France


Список литературы

1. Kiesslich R., Goetz M., Neurath M.F. Virtual histology // Best Pract Res Clin Gastroenterol. 2008; 22: 883–897.

2. Guillaud M., Richards-Kortum R., Follen M. Paradigm shift: a new breed of pathologist // Gynecol. Oncol. 2007; 107: Suppl. 1, S46–S49.

3. Goetz M., Kiesslich R. Confocal endomicroscopy: in vivo diagnosis of neoplastic lesions of the gastrointesti- nal tract // Anticancer Res. 2008; 28: 353–360.

4. Goetz M., Kiesslich R., Dienes H.P., Drebber U., Murr E., Hoffman A., Kanzler S., Galle P.R., Delaney P., Neurath M.F. In vivo confocal laser endomicroscopy of the human liver: a novel method for assessing liver microarchitecture in real time // Endoscopy. 2008; 40: 554–562.

5. Kiesslich R., Goetz M., Neurath M.F. Confocal laser en- domicroscopy for gastrointestinal diseases // Gastroin- test. Endosc. Clin. N Am. 2008; 18: 451–466.

6. Meining A. Confocal endomicroscopy // Gastrointest. Endosc. Clin. N Am. 2009; 19: 629–635.

7. Thiberville L., Moreno-Swirc S., Vercauteren T., Pel- tier E., Cavé C., Bourg Heckly G. In vivo imaging of the bronchial wall microstructure using fibered confocal flu- orescence microscopy // Am. J. Respir. Crit. Care Med. 2007; 175: 22–31.

8. Thiberville L., Salaün M., Lachkar S., Dominique S., Moreno-Swirc S., Vever-Bizet C., Bourg-Heckly G. Hu- man in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy // Eur. Respir. J. 2009; 33: 974–985.

9. St Croix C.M., Leelavanichkul K., Watkins S.C. Intravital fluorescence microscopy in pulmonary research // Adv. Drug. Deliv. Rev. 2006; 58: 834–840.

10. MacAulay C., Lane P., Richards-Kortum R. In vivo pa- thology: microendoscopy as a new endoscopic imaging modality // Gastrointest. Endosc. Clin. N Am. 2004; 14: 595–620.

11. Boyette L.B., Reardon M.A., Mirelman A.J., Kirkley T.D., Lysiak J.J., Tuttle J.B., Steers W.D. Fiberoptic imaging of cavernous nerves in vivo // J. Urol. 2007; 178: 2694– 2700.

12. Laemmel E., Genet M., Le Goualher G., Perchant A., Le Gargasson J.F., Vicaut E. Fibered confocal fluorescence microscopy (CellviZio) facilitates extended imaging in the field of microcirculation. A comparison with intravi- tal microscopy // J. Vasc. Res. 2004; 41: 400–411.

13. Vincent P., Maskos U., Charvet I., Bourgeais L., Stoppi- ni L., Leresche N., Changeux J.P., Lambert R., Meda P., Paupardin-Tritsch D. Live imaging of neural struc- ture and function by fibred fluorescence microscopy // EMBO Rep. 2006; 7: 1154–1161.

14. Hoffman A., Goetz M., Vieth M., Galle P.R., Neu- rath M.F., Kiesslich R. Confocal laser endomicroscopy: technical status and current indications // Endoscopy. 2006; 38: 1275–1283.

15. Kiesslich R., Goetz M., Vieth M., Galle P.R., Neurath M.F. Confocal laser endomicroscopy // Gastrointest. Endosc. Clin. N Am. 2005; 15: 715–731.

16. Peng Q., Brown S.B., Moan J., Nesland J.M., Wain- wright M., Griffiths J., Dixon B., Cruse-Sawyer J., Ver- non D. Biodistribution of a methylene blue derivative in tumor and normal tissues of rats // J. Photochem. Photo- biol. B. 1993; 20: 63–71.

17. Thiberville L., Salaün M., Lachkar S., Dominique S., Mo-

18. reno-Swirc S., Vever-Bizet C., Bourg-Heckly G. In vivo

19. confocal endomicroscopy of peripheral lung nodules

20. using 488 nm / 660 nm induced fluorescence and topi- 594. cal methylene blue // Eur. Respir. J. 2008; 32: Suppl. 52,

21. s.

22. Thiberville L., Salaün M., Moreno-Swirc S. In vivo en-

23. doscopic microimaging of the bronchial epithelial layer using 660 nm fibered confocal fluorescence microscopy and topical methylene blue // Eur. Respir. J. 2007; 30: Suppl. 51, 712s.

24. Gabrecht T., Andrejevic-Blant S., Wagnieres G. Blue-vi- olet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation // Photochem. Photobiol. 2007; 83: 450–458.

25. Richards-Kortum R., Sevick-Muraca E. Quantitative op- tical spectroscopy for tissue diagnosis // Annu Rev. Phys. Chem. 1996; 47: 555–606.

26. Bourg-Heckly G., Thiberville L., Vever-Bizet C. In vivo endoscopic autofluorescence microspectro-imaging of bronchi and alveoli // Proc SPIE. 2008; 6851.

27. Qu J., MacAulay C., Lam S. Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling and in vivo measurements // Opt. Eng. 1995; 34: 3334–3343.

28. Lane P.M., Lam S., McWilliams A., Leriche J.C., Ander- son M.W., Macaulay C.E. Confocal uorescence microen- doscopy of bronchial epithelium // J. Biomed. Opt. 2009; 14: 024008.

29. Jean F., Bourg-Heckly G., Viellerobe B. Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis // Opt. Express. 2007; 15: 4008– 4017.

30. Becker V., von Delius S., Bajbouj M., Karagianni A., Schmid R.M., Meining A. Intravenous application of fluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-to-imaging time // Gastrointest En- dosc. 2008; 68: 319–323.

31. Kiesslich R., Fritsch J., Holtmann M., Koehler H.H., Stolte M., Kanzler S., Nafe B., Jung M., Galle P.R., Neu- rath M.F. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis // Gastroenterology. 2003; 124: 880–888.

32. Taghavi S.A., Membari M.E., Eshraghian A., Dehgha- ni S.M., Hamidpour L., Khademalhoseini F. Comparison of chromoendoscopy and conventional endoscopy in the detection of premalignant gastric lesions // Can. J. Gast- roenterol. 2009; 23: 105–108.

33. Marion J.F., Waye J.D., Present D.H., Israel Y., Bodi- an C., Harpaz N., Chapman M., Itzkowitz S., Stein- lauf A.F., Abreu M.T., Ullman T.A., Aisenberg J., May- er L. Chromoendoscopy-targeted biopsies are superior to standard colonoscopic surveillance for detecting dyspla- sia in inflammatory bowel disease patients: a prospecti- ve endoscopic trial // Am. J. Gastroenterol. 2008; 103: 2342–2349.

34. Inoue H., Kazawa T., Sato Y., Satodate H., Sasajima K., Kudo S.E., Shiokawa A. In vivo observation of living cancer cells in the esophagus, stomach, and colon using catheter-type contact endoscope, “Endo-Cytoscopy sys- tem” // Gastrointest. Endosc. Clin. N Am. 2004; 14: 589–594

35. Shibuya K., Fujiwara T., Yasufuku K., Alaa M., Chiyo M., Nakajima T., Hoshino H., Hiroshima K., Nakatani Y., Yoshino I. Endo-cytoscopy system is a novel endoscopic technology to visualize microscopic imaging of the tra- cheobronchial tree // Eur. Respir. J. 2008; 32: Suppl. 52, 263s.

36. Mercer R.R., Crapo J.D. Spatial distribution of collagen and elastin fibers in the lungs // J. Appl. Physiol. 1990; 69: 756–765.

37. Weibel E.R., Sapoval B., Filoche M. Design of periphe- ral airways for efficient gas exchange // Respir. Physiol. Neurobiol. 2005; 148: 3–21.

38. Weibel E.R., Hsia C.C., Ochs M. How much is there re- ally? Why stereology is essential in lung morphometry // J. Appl. Physiol. 2007; 102: 459–467.

39. Black P.N., Ching P.S., Beaumont B., Ranasinghe S., Taylor G., Merrilees M.J. Changes in elastic fibres in the small airways and alveoli in COPD // Eur. Respir. J. 2008; 31: 998–1004.

40. Honda T., Ota H., Arai K., Hayama M., Fujimoto K., Yamazaki Y., Haniuda M. Three-dimensional analysis of alveolar structure in usual interstitial pneumonia // Vir- chows Arch. 2002; 441: 47–52.

41. Honda T., Ota H., Sano K. et al. Alveolar shrinkage in bronchioloalveolar carcinoma without central fibrosis // Lung Cancer. 2002; 36: 283–288.

42. Hsu E.R., Gillenwater A.M., Hasan M.Q., Wil- liams M.D., El-Naggar A.K., Richards-Kortum R.R. Real-time detection of epidermal growth factor receptor expression in fresh oral cavity biopsies using a molecu- lar-specific contrast agent // Int. J. Cancer. 2006; 118: 3062–3071.

43. Hsiung P.L., Hardy J., Friedland S., Soetikno R., Du C.B., Wu A.P., Sahbaie P., Crawford J.M., Lowe A.W., Contag C.H., Wang T.D. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal mic- roendoscopy // Nat. Med. 2008; 14: 454–458.


Для цитирования:


Тибервилль Л., Салаун М., Бург-Хекли Д. КОНФОКАЛЬНАЯ МИКРОСКОПИЯ IN VIVO: ОТ ПРОКСИМАЛЬНЫХ БРОНХОВ К АЛЬВЕОЛЯРНОМУ ДЕРЕВУ ЛЕГКИХ. Вестник трансплантологии и искусственных органов. 2013;15(2):81-108. https://doi.org/10.15825/1995-1191-2013-2-81-108

For citation:


Thiberville L., Salaün M., Bourg-Heckly G. IN VIVO CONFOCAL MICROENDOSCOPY: FROM THE PROXIMAL BRONCHUS DOWN TO THE PULMONARY ACINUS. Russian Journal of Transplantology and Artificial Organs. 2013;15(2):81-108. (In Russ.) https://doi.org/10.15825/1995-1191-2013-2-81-108

Просмотров: 536


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)