Development of the channel type centrifugal pump
https://doi.org/10.15825/1995-1191-2018-3-32-39
Abstract
A channel centrifugal pump has been developed which have calculated parameters during the nominal operating mode based on 3-dimensional computer simulation (flow rate 5 l/min, pressure drop 100 mm). In addition, pump’s operating conditions in ECMO mode are considered at high pressure drops of 200–300 mm Hg with a speed of rotor up to 3500 rpm. Simulation result was a creation of a new channel- type centrifugal pump with shear stress that do not exceed the allowable threshold of 150 Pa, and also minimizing stagnation and flow recirculation zones. The obtained data were also the result of use design of rotor with constant cross-section channels formed along a logarithmic curve and ensuring minimum turbulence due to the minimum outlet angle of the flow.
About the Authors
A. P. KuleshovRussian Federation
G. P. Itkin
Russian Federation
Address: 1, Shchukinskaya st., Moscow, 123182, Russian Federation. Тel. (499) 190-60-34.
A. S. Baybikov
Russian Federation
References
1. Thamsen B, Blümel B, Schaller J, Paschereit CO, Affeld K, Goubergrits L, Kertzscher U. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Artif. Organs. 2015; 39 (8): 651–659. DOI: 10.1111/aor.12542.
2. Taskin ME, Fraser KH, Zhang T, Gellman B, Fleischli A, Dasse KA, Griffith BP. Computational сharacterization of flow and hemolytic performance of the UltraMag Blood Pump for circulatory support. Artificial Organs. 2010; 34 (12): 1099–1113.
3. Koert A, Gellman B, Gempp T, Dasse K, Gilbert R et al. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support. ASAIO J. 2007; 53: 23– 31.
4. Burgreen G, Loree H, Bourque K, Dague C, Poirier V, Farrar D et al. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device. Artif. Organs. 2004; 28: 874–880.
5. Yu H, Janiga G, Thévenin D. Computational fluid dynamics-based design optimization method for archimedes screw blood pumps. Artif. Organs. 2016; 40 (4): 341– 352.
6. Mizunuma H, Nakajima R. Experimental study on the shear stress distributions in a centrifugal blood pump. Artif. Organs. 2007; 31: 550–559.
7. Nishida M, Yamane T, Tsukamoto Y, Ito K, Konishi T, Masuzawa T et al. Shear evaluation by quantitative flow visualization near the casing surface of a centrifugal blood pump. JSME International Journal. 2002; 45: 981–988.
8. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M et al. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report. Artif. Organs. 1999; 23: 762–768.
9. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M et al. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps. Artif. Organs. 1998; 22: 381–385.
10. Kido K, Hoshi H, Watanabe N, Kataoka H, Ohuchi K, Asama J et al. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump). Artif. Organs. 2006; 30: 392–399.
11. Ломакин АА. Центробежные и осевые насосы. 2-е изд., перераб. и доп. М.–Л.: Машиностроение, 1966: 364. Lomakin AA. Centrifugal and axial pumps. 2-nd ed. M.: Mechanical Engineering, 1966: 364.
12. Машин АН. Расчет и проектирование спирального отвода и полуспирального подвода центробежного насоса. Учебное пособие. М.: МЭИ, 1980: 43. Mashin AN. Calculation and design of the spiral branch and semi-helical approach of the centrifugal pump. Tutorial. M.: MEI, 1980: 43.
13. Готье СВ, Попцов ВН, Спирина ЕА. Экстракорпоральная мембранная оксигенаци кардиохирургии и трансплантологии. М.: Триада, 2013: 272. Gautier SV, Popcov VN, Spirina EA. Exstracorporeal membrane oxygenation. M.: Triada, 2013: 272.
Review
For citations:
Kuleshov A.P., Itkin G.P., Baybikov A.S. Development of the channel type centrifugal pump. Russian Journal of Transplantology and Artificial Organs. 2018;20(3):32-39. (In Russ.) https://doi.org/10.15825/1995-1191-2018-3-32-39