BIOCOMPATIBLE AND MATRIX PROPERTIES OF POLYLACTIDE SCAFFOLDS
https://doi.org/10.15825/1995-1191-2018-2-82-90
Abstract
Aim. A study of biocompatible and matrix properties of polylactide scaffolds as a materials for medical implanted articles as well as scaffolds for cell and tissue engineering constructions.
Materials and methods. Biocompatibility of polylactide scaffolds in the form of porous disks obtained by freeze drying method was estimated in vitro: by UV spectroscopy, pH measurements and cytotoxicity to NIH/3T3 mice fi broblasts in static conditions. Biocompatibility of scaffolds in vivo was investigated by its implantation under mice skin. Matrix properties of polylactide scaffolds (cell adhesion and proliferation) were studied in dynamic conditions with mesenchymal stromal cells of human adipose tissue (MSC ADh) in perfusion bioreactor.
Results. As a result of in vitro investigations it was shown that polylactide scaffolds obtained by freeze drying are satisfi ed to demands presenting biocompatible medical articles with respect to pH measurements, extraction tests and cyto toxicity to mice fi broblasts NIH/3T3. Cultivation of MSC ADh in perfusion bioreactor in hepatogenic media is accompanying by good adhesion and proliferation both on the surface and in the bulk of porous disks. However implantation of polylactide scaffolds under mice skin is accompanying by resorption and leads to the infl ammation reaction of adjacent tissues.
Conclusions. Positive results obtained only by in vitro testing of biocompatibility and matrix properties are not enough to recommend the material to be used as a scaffolds for cell and tissue engineering constructions. The preliminary study of biomechanical characteristics of the implant is recommended.
About the Authors
V. I. SevastianovRussian Federation
1, Shchukinskaya st., Moscow, 123182.
A. M. Grigoriev
Russian Federation
Yu. B. Basok
Russian Federation
L. A. Kirsanova
Russian Federation
V. N. Vasilets
Russian Federation
A. P. Malkova
Russian Federation
G. A. Dukhina
Russian Federation
T. E. Grigoriev
Russian Federation
Yu. D. Zagoskin
Russian Federation
K. V. Tokaev
Russian Federation
T. K. Tokaev
Russian Federation
References
1. Biosovmestimie materiali: uchebnoe posobie / Pod red. V.I. Sevastianova i M.P. Kirpichnikova. M.: MIA, 2011: 544.
2. Vert M. Bioresorbable polymers for temporary therapeutic applications. Angew. Macromol. Chem. 1989; 166/167: 155–168.
3. Hutmacher D, Markus MS, Hürzeler B, Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int. J. Oral & Maxillofacial Implants.1996; 11: 667–678.
4. Peters MC, Mooney DJ. Synthetic extracellular matrices for cell transplantation in Porous materials for tissue engineering, eds.: Dean-Mo Liu, Vivek Dixit. Materials Science Forum. 1997; 250: 43–52.
5. Medvedev DD, Nedoseev SL, Nistratov VM, Smirnov VP, Petyaev VA, Shvarckopf PV i dr. Plazmoobrazuyushchie polimernye sredy dlya inercial’nogo termoyadernogo sinteza i bioinzhenerii. Voprosy atomnoj nauki i tekhniki. Ser. Termoyadernyj sintez. 2010; 1: 22–31.
6. Gong Y, Zhou Q, Gao C, Shen J. In vitro and in vivo degradability and cytocompatibility of poly(L-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomater. 2007; 3: 531–540.
7. Spadaccio C, Rainer A, Trombetta M, Vadalá G, Chello M. Covino E et al. Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Annals of Biomedical Engineering. 2009; 37: 1376–1389.
8. Pisanti P, Yeatts A.B, Cardea S, Fisher JP, Reverchon E. Tubular perfusion system culture of human mesenchymal stem cells on poly- L- Lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process. J. Biomed. Mat. Soc. Part A. 2012; 100A: 2563–2572.
9. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2007; 32: 762– 798.
10. Sevastianov VI. Kletochno-injenernie konstruktsii v tkanevoi ingenerii i regenerativnoi meditsine. Vestnik transplantologii i iskusstvennikh organov. 2015; 17 (2): 127–130.
11. Antonov EN, Bogorodskii SE, Krotova LI, Popov VK, Belov VY, Kursakov SV i dr. Formirovanie komponentov in’ektsionnoi formi atsetilsalitsilovoi kisloti prolongirovannogo deistvija s pomoshiju sverhkriticheskogo dioksida ugleroda. Sverhkriticheskie Fluidi. Teorija i praktika. 2016; 11 (2): 4–13.
12. Kellomaki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Tormala P. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials. 2000; 21: 2495–2505.
13. Coutu DL, Yousefi AM, Galipeau J. Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J. Cell. Biochem. 2009; 108: 537–546.
14. Bishi DK, Mathapati S, Venugopal JR, Guhathakurta S, Cherian KM, Verma RS et al. A patient-inspired ex vivo liver tissue engineering approach with autologous mesenchymal stem cells and hepatogenic serum. Adv. Healthcare Mater. 2016; 5: 1058–1070.
15. Giller DB, Tokaev KV, Giller GV, Martel II, Glotov AA, Anilines II et al. Surgical management and results of treatment of caseous pneumonia (Review of literature and own observations). Thoracic and cardiovascular surgery. 2010; 1: 54–58.
16. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv. Drug Delivery Reviews. 2016; 107: 367–392.
17. GOST R 52770-2016 «Izdelija meditsinskie. Trebovanija besopastnosti. Metodi sanitarno-chimicheskih i toksikologicheskich ispitanii».
18. GOST ISO 10993-5-2011 «Izdeliya meditsinskie. Otsenka biologicheskogo deistvija meditsinskih izdelii. Chast 5. Issledovanija na tsitotoksichnost: metodi in vitro».
19. GOST ISO 10993-6-2011 «Izdelija meditsinskii. Otsenka biologichesko deistvija. Chast 6. Issledovanie mestnogo deistvija posle implantatsii».
20. Sevastianov VI, Basok YuB, Grigoryev AM, Kirsanova LA, Vasilets VN. A perfusion bioreactor for making tissue-engineered constructs. Biomedical Engineering. 2017; 51 (3): 162–165.
21. Surguchenko VA, Ponomareva AS, Kirsanova LA, Skaleckij NN, Sevastianov VI. The cell-engineered construct of cartilage on the basis of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (in vitro study). J. Biomed. Mat. Soc. Part A. 2015; 103 (2): 463–470.
22. Maiborodin IV, Kuznetsova IV, Beregovoi EA, Shevela AI, Barannik MI, Maiborodina VI et al. Reaction of rat tissues to implantation of lactic acid-based biodegradable polymer. Bull. Exper. Biol. Med. 2014; 156 (6): 874–879.
23. Török E1, Vogel C, Lütgehetmann M, Ma PX, Dandri M, Petersen J et al. Morphological and functional analysis of rat hepatocyte spheroids generated on poly(L-lactic acid) polymer in a pulsatile fl ow bioreactor. Tissue Eng. 2006; 12 (7): 1881–1890.
24. Rebelo SP, Costa R, Silva MM, Marcelino P, Brito C, Alves PM. Three-dimensional co-culture of human hepatocytes and mesenchymal stem cells: improved functionality in long-term bioreactor cultures. J. Tissue Eng. Regen. Med. 2017; 11 (7): 2034–2045.
Review
For citations:
Sevastianov V.I., Grigoriev A.M., Basok Yu.B., Kirsanova L.A., Vasilets V.N., Malkova A.P., Dukhina G.A., Grigoriev T.E., Zagoskin Yu.D., Tokaev K.V., Tokaev T.K. BIOCOMPATIBLE AND MATRIX PROPERTIES OF POLYLACTIDE SCAFFOLDS. Russian Journal of Transplantology and Artificial Organs. 2018;20(2):82-90. (In Russ.) https://doi.org/10.15825/1995-1191-2018-2-82-90