BIOFILM FORMATION ON THE SURFACE OF MATERIALS AND MEDICAL PRODUCTS BY NOSOCOMIAL STRAINS ISOLATED FROM THE BIOLOGICAL SUBSTRATES OF PATIENTS
https://doi.org/10.15825/1995-1191-2013-4-92-97
Abstract
Aim. To study the ability of hospital-associated strains isolated from the biological substrates of patients oper- ated on under extracorporeal circulation, to form biofilms on the surface of medical materials and products.
Materials and methods. The formation of biofilms of strains of Staphylococcus aureus, Serratia liquefaciens, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. isolated from the biological substrates of patients operated on under extracorporeal circulation, on different surfaces (politetraftorotilen, medical poly- ethylene, Polyoxybutirate-to-valerate, silicone, polyvinyl chloride), was studied by a modified method for the surface of the medical materials and products.
Results. The influence of the material nature, as well as hydrophi- lization of the surface, on the ability of hospital-associated strains, isolated from the biological substrates of pa- tients operated on under extracorporeal circulation, to form biofilms is studied. It is shown that that certain strains exhibit an increased tendency to biofilm formation on more hydrophobic surfaces, e. g., Acinetobacter spp. At the same time the activity of Staphylococcus aureus on silicon surface (hydrophobic surface) is minimal. Other strains almost equally form biofilms on hydrophilic and hydrophobic surfaces e.g. Serratia liquefaciens. It was also shown that the surface hydrophilization of PEG to 50% for all the studied strains leads to dramatic reduc- tion of biofilm formation.
Conclusion. The tendency to form biofilms of a particular hospital-associated strain is individual and depends on the nature of the medical material and physical-chemical characteristics of its surface. Hydrophilization of the surface of the medical material is accompanied by a lowered risk of biofilm formation.
About the Authors
E. A. NemetsR. A. Yunes
A. K. Khudoshin
N. I. Gabrielyan
V. I. Sevastyanov
References
1. СПИСОК ЛИТЕРАТУРЫ
2. Габриэлян Н.И., Горская Е.М., Романова Н.И., Ци- рульникова О.М. Госпитальная микрофлора и био- пленки. Вестник трансплантологии и искусствен- ных органов. 2012; 14 (3): 83–91.
3. Романова Н.И., Буданова Е.В., Спирина Т.С. Спо- собность нозокомиальных штаммов к образованию биопленок. Труды научно-практической конферен- ции по внутрибольничным инфекциям в больницах и различных областях. 2012; 58–59.
4. Donlan R.M. Biofilms on central venous catheters: is eradication possible? Curr. Top. Microbiol. Immunol. 2008; 322: 133–161.
5. Бережанский Б.В., Жевнерев А.А. Катетер-ассоци- ированные инфекции кровотока. Клин. микробиол. антимикроб. химиотер. 2006; 8 (2): 130–144.
6. Stefanidis C.J. Prevention of catheter-related bacteremia in children on hemodialysis: time for action. Pediatr. Nephrol. 2009; 24: 2087–2095.
7. Bink A., Pellens K., Cammue B. P.A., Thevissen K. How to eradicate Candida Biofilms? The Open Mycology J. 2011; 5: 29–38.
8. Afreenish H., Javaid U., Kaleem F., Omair M. Khalid A., Iqbal M. Evaluation of different detection methods of biofilm formation in clinical isolates. Braz. J. Infect. Dis. 2011; 15 (4): 305–311.
9. Thomsen T.R., Hall-Stoodley L., Moser C., Stoodley P. The role of bacterial biofilms in Infections of Catheters and Shunts. Biofilm infections. 2011; 91–109.
10. Chandra J., Long L., Ghannoum M.A., Mukherjee P.K. A rabbit model for evaluation of catheter-associated fun- gal biofilms. Virulence. 2011; 2 (5): 466–474.
11. Danish M.S., Rabih O.D. New strategies to prevent catheter-associated urinary tract infections. Nature Re- views Urology. 2012; 9: 305–314.
12. Costerton J.W. The biofilm primer. Springer series on Biofilms. 2007; 1: 3.
13. Kwasny S.M., Opperman T.J. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr. Protoc. Phar- macol. 2010; 1 (50): 1–27.
14. Николаев Ю.А., Плакунов В.К. Биопленка – «город микробов» или аналог многоклеточного организма? Микробиология. 2007; 76 (2): 125–138.
15. Tirri T., Söderling E., Malin M., Peltola M., V. Seppä- lä J., O. Närhi T. Adhesion of respiratory-infection- associated microorganisms on degradable thermoplas- tic composites. International Journal of Biomaterials. 2009: 6.
16. Dunne W. M. Jr. Bacterial adhesion: seen any good bio- films lately? Clinical Microbiology Reviews. 2002; 15 (2): 155–166.
17. Oliveira R., Azeredo J., Teixeira P., Fonseca A.P. The role of hydrophobicity in bacterial adhesion in Biofilm Community Interactions. Chance or Necessity. 2001; 11–22.
18. Севастьянов В.И. Взаимодействие чужеродной по- верхности с белковыми и клеточными компонента- ми биологических сред. Биосовместимые материа- лы (учебное пособие). Под ред. В.И. Севастьянова и М.П. Кирпичникова. М.: МИА, 2011: 77–129.
Review
For citations:
Nemets E.A., Yunes R.A., Khudoshin A.K., Gabrielyan N.I., Sevastyanov V.I. BIOFILM FORMATION ON THE SURFACE OF MATERIALS AND MEDICAL PRODUCTS BY NOSOCOMIAL STRAINS ISOLATED FROM THE BIOLOGICAL SUBSTRATES OF PATIENTS. Russian Journal of Transplantology and Artificial Organs. 2013;15(4):92-97. (In Russ.) https://doi.org/10.15825/1995-1191-2013-4-92-97