Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration of damaged liver (experimental model of acute liver failure)

https://doi.org/10.15825/1995-1191-2017-2-78-89

Abstract

Aim. A comparative analysis of the functional efficacy of biomedical cell products (BMCP) for the regeneration of damaged liver based on biopolymer scaffolded porous and hydrogel matrices was performed on the experimental model of acute liver failure. Materials and methods. Matrices allowed for clinical use were employed for BMCP in the form of a sponge made from biopolymer nanostructured composite material (BNCM) based on a highly purified bacterial copolymers of poly (β-hydroxybutyrate-co-β-oxyvalerate) and polyethylene glycol and a hydrogel matrix from biopolymer microheterogeneous collagen-containing hydrogel (BMCH). Cellular component of BMCP was represented by liver cells and multipotent mesenchymal bone marrow stem cells. The functional efficacy of BMCP for the regeneration of damaged liver was evaluated on the experimental model of acute liver failure in Wistar rats (n = 40) via biochemical, morphological, and immunohistochemical methods. Results. When BMCP was implanted to regenerate the damaged liver on the basis of the scaffolded BNCM or hydrogel BMCH matrices, the lethality in rats with acute liver failure was absent; while in control it was 66.6%. Restoration of the activity of cytolytic enzyme levels and protein-synthetic liver function began on day 9 after modeling acute liver failure, in contrast to the control group, where recovery occurred only by days 18–21. Both matrices maintained the viability and functional activity of liver cells up to 90 days with the formation of blood vessels in BMCP. The obtained data confirm that scaffolded BNCM matrix and hydrogel BMCH matrix retain for a long time (up to 90 days) the vital activity of the adherent cells in the BMCP composition, which allows using them to correct acute liver failure. At the same time, hydrogel matrix due to the presence of bioactive components contributes to the creation of the best conditions for adhesion and cell activity which accelerate the regeneration processes in the damaged liver compared to BMCP on scaffolded matrix. Conclusion. A statistically significant difference was found between the functional efficacy of the BMCP studied based on BNCM and BMCH matrices. BMCP based on hydrogel BMCH matrix was more effective for the regeneration of damaged liver.

About the Authors

S. V. Gautier
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


M. Yu. Shagidulin
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


N. A. Onishchenko
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
Russian Federation


I. M. Iljinsky
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


V. I. Sevastianov
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
Russian Federation


References

1. Готье СВ, Константинов БА, Цирульникова ОМ. Трансплантация печени. М.: МИА, 2008. 246. Gautier SV, Konstantinov BA, Cirul’nikova OM. Transplantaciya pecheni. M.: MIA, 2008. 246.

2. Исраилова ВК, Айткожин ГК. Современные представления о печеночной недостаточности и методы их лечения. Вестн. КАЗМНУ. 2012; 1: 36–44. Israilova VK, Ajtkozhin GK. Sovremennye predstavleniya o pechenochnoj nedostatochnosti i metody ih lecheniya. Vestn. KAZMNU. 2012; 1: 36–44.

3. Плеханов АН. Острая печеночная недостаточность – проблемы и перспективы их решения. Бюллетень ВСНЦ СО РАМН. 2012; 5 (87). Часть 2: 150–159. Plekhanov AN. Ostraya pechenochnaya nedostatochnost’ – problemy i perspektivy ih resheniya. Byulleten’ VSNC SO RAMN. 2012; 5 (87). Chast’ 2: 150–159.

4. Онищенко НА, Люндуп АВ, Шагидулин МЮ, Кра­шенинников МЕ. Синусоидальные клетки печени и клетки костного мозга как компоненты единой функциональной системы регуляции восстановительного морфогенеза в здоровой и поврежденной печени. Клеточная трансплантология и тканевая инженерия. 2011; 2. Т. VI: 73–87. Onishchenko NA, Lyundup AV, Shagidulin MYu, Krasheninnikov ME. Sinusoidal’nye kletki pecheni i kletki kostnogo mozga kak komponenty edinoj funkcional’noj sistemy regulyacii vosstanovitel’nogo morfogeneza v zdorovoj i povrezhdennoj pecheni. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2011; 2. T. VI: 73–87.

5. Franquesa M, Hoogduijn MJ, Eggenhofer E, Pinxteren J, Christ B, Obermajer N, Pulin A et al. The MiSOT Study Group. Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Fourth Meeting: Lessons Learned from First Clinical Trials. Transplantation. 2013; 96 (3): 234–238.

6. Готье СВ, Шагидулин МЮ, Онищенко НА, Краше­нинников МЕ, Ильинский ИМ, Можейко НП, Люн­дуп АВ и др. Коррекция хронической печеночной недостаточности при трансплантации клеток печени в виде суспензии и клеточно-инженерных конструкций (экспериментальное исследование). Вестник РАМН. 2013; 4: 44–51. Gautier SV, Shagidulin MYu, Onishchenko NA, Krasheninnikov ME, Il’inskij IM, Mozhejko NP, Lyundup AV i dr. Korrekciya hronicheskoj pechenochnoj nedostatochnosti pri transplantacii kletok pecheni v vide suspenzii i kletochno-inzhenernyh konstrukcij (ehksperimental’noe issledovanie). Vestnik RAMN. 2013; 4: 44–51.

7. Онищенко НА, Шагидулин МЮ, Крашенинников МЕ, Великий ДА. Повреждения органов и тканей, требующие применения клеточных технологий. Клеточные технологии для регенеративной медицины. Под ред. Г.П. Пинаева, М.С. Богдановой, М.М. Кольцовой. СПб.: Изд-во Политехн. ун-та. 2011: 25–43. Onishchenko NA, Shagidulin MYu, Krasheninnikov ME, Velikij DA. Povrezhdeniya organov i tkanej, trebuyushchie primeneniya kletochnyh tekhnologij. Kletochnye tekhnologii dlya regenerativnoj mediciny. Pod red. G.P. Pinaeva, M.S. Bogdanovoj, M.M. Kol’covoj. SPb.: Izd-vo Politekhn. un-ta. 2011: 25–43.

8. Allemann F, Mizuno S et al. Effect of hyaluronan on engeneered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J. Biomed. Mater. Res. 2001; 55: 13–19.

9. Hedberg LE, Kroese-Deutman HC, Shih CK et al. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable polymeric scaffolds on bone formation in vivo II. J. Biomed. Mater. Res. 2005; 72A (4): 343–353.

10. Tan W, Desai MS, Desai TA. Microfluidic patterning of cells in extracellular matrix biopolymers: effect of channel size, cell type, and matrix composition on pattern integrity. Tissue Engineering. 2003; 9 (2): 255–268.

11. Соловьева ИВ, Шестерня Н, Перова НВ, Севастья­нов ВИ. Комбинированное применение биополимерного гетерогенного гидрогеля и гиалуроновой кислоты при остеоартрозе (первый опыт). Врач. 2016; 1: 12–17. Solov’eva IV, Shesternya N, Perova NV, Sevast’yanov VI. Kombinirovannoe primenenie biopolimernogo geterogennogo gidrogelya i gialuronovoj kisloty pri osteoartroze (pervyj opyt). Vrach. 2016; 1: 12–17.

12. Соловьева ИВ, Перова НВ, Севастьянов ВИ. Возможности применения биополимерного микрогетерогенного коллагенсодержащего геля при травмах и заболеваниях опорно-двигательного аппарата. Современная медицина. 2016; 2: 66–69. Solov’eva IV, Perova NV, Sevast’yanov VI. Vozmozhnosti primeneniya biopolimernogo mikrogeterogennogo kollagensoderzhashchego gelya pri travmah i zabolevaniyah opornodvigatel’nogo apparata. Sovremennaya medicina. 2016; 2: 66–69.

13. Немец ЕА, Ефимов АЕ, Егорова ВА, Тоневицкий АГ, Севастьянов ВИ. Микро- и наноструктурные характеристики трехмерных пористых носителей ЭластоПОБ®-3D. Бюллетень эксперименталь­ной биологии и медицины. 2008; 45 (3): 345–347. Nemec EA, Efimov AE, Egorova VA, Tonevickij AG, Sevast’yanov VI. Mikro- i nanostrukturnye harakteristiki trekhmernyh poristyh nositelej EhlastoPOB®-3D. Byulleten’ ehksperimental’noj biologii i mediciny. 2008; 45 (3): 345–347.

14. Севастьянов ВИ, Немец ЕА, Волова ТГ, Марковце­ва МГ. Трехмерные пористые матриксы для трансплантации клеток на основе биодеградируемого бактериального сополимера «Биопластотан». Перс­пективные материалы. 2007; 6: 5–10. Sevast’yanov VI, Nemec EA, Volova TG, Markovceva MG. Trekhmernye poristye matriksy dlya transplantacii kletok na osnove biodegradiruemogo bakterial’nogo sopolimera «Bioplastotan». Perspektivnye materialy. 2007; 6: 5–10.

15. Seglen O. Preparation of isolated rat liver cells. Methods. Cell. Biol. 1976; 13: 29–83.

16. Chen O, Kon J, Ooe H, Sasaki K, Mitaka T. Selective proliferation of rat hepatocyte progenitor cells in serumfree culture. Nat. Protoc. 2007; 2: 1197–1205.

17. Шумаков ВИ, Онищенко НА. Биологические резервы клеток костного мозга и коррекция органных дисфункций. М.: Лавр, 2009. 307. Shumakov VI, Onishchenko NA. Biologicheskie rezervy kletok kostnogo mozga i korrekciya organnyh disfunkcij. M.: Lavr, 2009. 307.

18. Мosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983; 65: 55–63.

19. Chen O, Kon J, Ooe H, Sasaki K, Mitaka T. Selective proliferation of rat hepatocyte progenitor cells in serumfree culture. Nat. Protoc. 2007; 2: 1197–1205.

20. Патент РФ № 2433828 (2011). Севастьянов В.И., Перова Н.В. Инъекционный гетерогенный биополимерный гидрогель для заместительной и регенеративной хирургии и способ его получения. Patent RF № 2433828 (2011). Sevast’yanov V.I., Perova N.V. In’’ekcionnyj geterogennyj biopolimernyj gidrogel’ dlya zamestitel’noj i regenerativnoj hirurgii i sposob ego polucheniya.

21. Fisher SA, Tam RY, Shoichet MS. Tissue mimetics: engineered hydrogel matrices provide biomimetic environments for cell growth. Tissue Engineering. 2014; Part A, 20 (5, 6): 895–898.


Review

For citations:


Gautier S.V., Shagidulin M.Yu., Onishchenko N.A., Iljinsky I.M., Sevastianov V.I. Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration of damaged liver (experimental model of acute liver failure). Russian Journal of Transplantology and Artificial Organs. 2017;19(2):78-89. (In Russ.) https://doi.org/10.15825/1995-1191-2017-2-78-89

Views: 1416


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)