Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Optimization of Implantable Axial Pump to Increase Efficiency of Mechanical Circulatory Support

https://doi.org/10.15825/1995-1191-2017-2-61-68

Abstract

Aim. To optimize implantable axial pump to increase hydraulic efficiency and reduce blood hemolysis. Materials and methods. In this article the basic geometric parameters of impeller’s geometry (the blade’s angle, the blade’s length and the twist angle’s ratio) were investigated and optimized using methods of computer hydrodynamics. The calculations were carried out for the optimum operation of the pump at the speed of 8000 rpm. Results. The main parameters of impeller’s geometric were determined which made it possible to increase efficiency of the pump by an average of 7.5% (depending on the pump operation mode) and pressure drop of 8% on average. The value of shear stress in the flow region obtained as a result of the calculations did not exceed 147 Pa admissible from the point of view of blood hemolysis.

About the Authors

S. V. Gautier
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation;
Russian Federation


A. P. Kuleshov
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation;
Russian Federation


A. E. Efimov
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation;
Russian Federation


I. I. Agapov
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation;
Russian Federation


G. P. Itkin
V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; Moscow Institute of Physics and Technology (State University), Department of physics of living systems
Russian Federation


References

1. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics:the finite volume method. 2nd ed. Harlow, UK: Pearson Education, 2007. 518.

2. Burgreen GW, Loree II HM, Bourque K, Dague C, Poirier VL, Farrar D et al. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device. Artif. Organs. 2004; 28: 874–880. doi: 10.1111/j.1525-1594.2004.07384.x.

3. Chua LP, Song G, Yu SCM, Lim TM. Computational fluid dynamic of gap flow in a biocentrifugal blood pump. Artif. Organs. 2005; 29: 620–628. doi: 10.1111/j.1525-1594.2005.29099.x.

4. Chua LP, Song G, Lim TM, Zhou T. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Artif. Organs. 2006; 30: 467–477. doi: 10.1111/j.1525-1594.2006.00243.х.

5. Zhang J, Koert A, Gellman B, Gempp TM, Dasse KA, Gilbert RJ et al. Optimization of a miniature maglev ventricular assist device for pediatric circulatory support. АSAIO J. 2007; 53: 23–31. doi: 10.1097/01.mat.0000247043.18115.f7.

6. Zhu X, Zhang M, Zhang G, Liu H. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump. ASAIO J. 2006; 52: 624–629. doi: 10.1097/01.mat.0000242161.50276.1e.

7. Chua LP, Su B, Tau ML, Zhou T. Numerical simulation of an axial blood pump. Artif. Organs. 2007; 31: 560–570. doi: 10.1111/j.1525-1594.2007.00422.x.

8. Throckmorton AL, Lim DS, McCulloch MA, Jiang W, Song X, Allaire PE, Wood HG, Olsen DB. Computational design and experimental performance testing of an axialflow pediatric ventricular assist device. ASAIO J. 2005; 51 (5): 629–635. doi: 10.1097/01.mat.0000177541.53513.a8.

9. Kido K, Hoshi H, Watanabe N, Kataoka H, Ohuchi K, Asama J et al. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump). Artif. Organs. 2006; 30: 392–399. doi: 10.1111/j.1525-1594.2007.00422.x.

10. Yu H, Janiga G, Thévenin D. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps. Artif. Organs. 2016; 40 (4): 341–352. doi: 10.1111/j.1525-1594.2006.00231.x.

11. Thamsen B, Blümel B, Schaller J, Paschereit CO, Affeld K, Goubergrits L, Ulrich Kertzscher U. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Artif. Organs. 2015; 39 (8): 651–659. doi: 10.15825/1995-1191-2014-3-76-84.


Review

For citations:


Gautier S.V., Kuleshov A.P., Efimov A.E., Agapov I.I., Itkin G.P. Optimization of Implantable Axial Pump to Increase Efficiency of Mechanical Circulatory Support. Russian Journal of Transplantology and Artificial Organs. 2017;19(2):61-68. (In Russ.) https://doi.org/10.15825/1995-1191-2017-2-61-68

Views: 1267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)