Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Experimental evaluation of mechanical heart support system based on viscous friction disc pump

https://doi.org/10.15825/1995-1191-2017-1-28-34

Abstract

Aim. Experimental evaluation of the viscous friction disk pump efficiency, studying the relationship between inter-disk clearance and sizes of input and output ports and pump performance parameters.

Materials and methods. To assess the characteristics and to optimize the disk friction pump design the pump model and experimental stand were created. Pump dimensions were set on the basis of medical and biological requirements for mechanical heart support systems and with due consideration of the experimental studies of our colleagues from Pennsylvania. Flow volume of the working fluid was measured by float rotameter Krohne VA-40 with measurement error of not more than 1%. The pressure values in the hydrodynamic circuit were measured using a monitor manufactured by Biosoft-M. Expansion device allowed changing the flow resistance of the system simulating the total peripheral resistance of the circulatory system.

Results. Linear direct correlation between the pump performance and the pressure drop of liquid being created at the inlet and outlet of the pump was obtained. The required flow rate (5–7 l/min) and pressure (90–100 mmHg) were reached when the rotor speed was in the range of 2500–3000 rev/min. It has been shown that the increase of the inlet diameter to 15 mm has not resulted in a significant increase in the pump performance, and that the highest efficiency values can be obtained for the magnitude of inter-disk gap of 0.4–0.5 mm.

Conclusion. Designed and manufactured experimental disc pump model for pumping fluid has showed the fundamental possibility to use this model as a system for mechanical support of the heart.

About the Authors

A. M. Chernyavskiy
Federal State Institution «E.N. Meshalkin Novosibirsk Research Institute of Circulation Pathology» of the Ministry of Healthcare of the Russian Federation
Russian Federation
Novosibirsk, Russian Federation


T. M. Ruzmatov
Federal State Institution «E.N. Meshalkin Novosibirsk Research Institute of Circulation Pathology» of the Ministry of Healthcare of the Russian Federation
Russian Federation
Novosibirsk, Russian Federation


A. V. Fomichev
Federal State Institution «E.N. Meshalkin Novosibirsk Research Institute of Circulation Pathology» of the Ministry of Healthcare of the Russian Federation
Russian Federation
Novosibirsk, Russian Federation


A. E. Medvedev
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian branch of Russian Academy of the Sciences
Russian Federation
Novosibirsk, Russian Federation


Yu. M. Prikhodko
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian branch of Russian Academy of the Sciences
Russian Federation
Novosibirsk, Russian Federation


V. M. Fomin
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian branch of Russian Academy of the Sciences
Russian Federation
Novosibirsk, Russian Federation


V. P. Fomichev
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian branch of Russian Academy of the Sciences
Russian Federation
Novosibirsk, Russian Federation


K. A. Lomanovich
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian branch of Russian Academy of the Sciences
Russian Federation
Novosibirsk, Russian Federation


A. M. Karaskov
Federal State Institution «E.N. Meshalkin Novosibirsk Research Institute of Circulation Pathology» of the Ministry of Healthcare of the Russian Federation
Russian Federation
Novosibirsk, Russian Federation


References

1. Kelly DT. Paul Dudley White International Lecture Our Future Society: A Global Challenge. Circulation. 1997; 95 (11): 2459–2464.

2. Фомин ИВ, Фомин КВ, Беленков ЮН и др. Распространенность хронической сердечной недостаточности в Европейской части Российской Федерации – данные ЭПОХА-ХСН. Сердечная недостаточность. 2006; 7 (3): 112–115. Fomin IV, Fomin KV, Belenkov YuN i dr. Rasprostranennost’ hronicheskoj serdechnoj nedostatochnosti v Evropejskoj chasti Rossijskoj Federacii – dannye EPOHA-HSN. Serdechnaya nedostatochnost’. 2006; 7 (3): 112–115.

3. Беленков ЮН, Фомин ИВ, Мареев ВЮ. Первые результаты Российского эпидемиологического исследования по ХСН. Сердечная недостаточность. 2003; 4 (11): 26–30. Belenkov YuN, Fomin IV, Mareev VYu. Pervye rezul’taty Rossijskogo ehpidemiologicheskogo issledovaniya po HSN. Serdechnaya nedostatochnost’. 2003; 4 (11): 26–30.

4. Мареев ВЮ, Агеев ФТ, Арутюнов ГП и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Сердечная недостаточность. 2013; 14 (7): 379–472. Mareev VYu, Ageev FT, Arutyunov GP i dr. Nacional’nye rekomendacii OSSN, RKO i RNMOT po diagnostike i lecheniyu HSN (chetvertyj peresmotr). Serdechnaya nedostatochnost’. 2013; 14 (7): 379–472.

5. Stehlik J, Edwards LB. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report – 2012. The Journal of heart and lung transplantation. 2012; 31 (10): 1052–1064.

6. Garbade J, Bittner HB, Barten MJ et al. Current Trends in Implantable Left Ventricular Assist Devices. Cardiology Research and Practice. 2011. Vol. 2011, Article ID 290561, 9 pages, 2011. doi: 10.4061/2011/290561.

7. Чернявский АМ, Ефремова ОС, Рузматов ТМ и др. Предикторы отдаленной летальности больных ишемической болезнью сердца с выраженной левожелудочковой дисфункцией. Патология кровообращения и кардиохирургия. 2015; 19 (2): 49–55. Cherniavsky AM, Yefremova OS, Ruzmatov TM et al. Predictors of remote mortality of CHD patients with severe left ventricular dysfunction. Circulation Pathology and Cardiac Surgery. 2015; 19 (2): 49–55. [English abstract].

8. Иткин ГП. Устройства для вспомогательного кровообращения: прошлое, настоящее и будущее непульсирующих насосов. Вестник трансплантологии и искусственных органов. 2009; 11 (3): 81–87. Itkin GР. Ventricle assist device: past, present, and future nonpulsatile pumps. Vestnik transplantologii i iskusstvennykh organov = Russian journal of transplantology and artificial organs. 2009; 11 (3): 81–87. [English abstract].

9. Иткин ГП. Механическая поддержка кровообращения: проблемы, решения и новые технологии. Вестник трансплантологии и искусственных органов. 2014; 16 (3): 76–84. Itkin GP. Mechanical circulatory support: problems, solutions and new directions. Russian Journal of Transplantology and Artificial Organs. 2014; 16 (3): 76–84. (In Russ.) doi: 10,15825/1995-1191-2014-3-76-84.

10. Tesla N. Fluid propulson. U.S. Patent 1,061,206, 1913.

11. Мисюра ВИ, Овсянников БВ, Присняков ВФ. Дисковые насосы. М.: Машиностроение, 1986. Misjura VI, Ovsjannikov BV, Prisnjakov VF. Diskovye nasosy. M.: Mashinostroenie, 1986.

12. Медведев АЕ, Фомин ВМ. Двухфазная модель течения крови в крупных и мелких сосудах. Доклады Академии наук. 2011; 441 (4): 476–479. Medvedev AE, Fomin VM. Dvuhfaznaja model’ techenija krovi v krupnyh i melkih sosudah. Doklady Akademii nauk. 2011; 441 (4): 476–479.

13. Медведев АЕ. Двухфазная модель течения крови. Российский журнал биомеханики. 2013; 17; 4 (62): 22–36. Medvedev AE. Dvuhfaznaja model’ techenija krovi. Rossijskij zhurnal biomehaniki. 2013; 17; 4 (62): 22–36.

14. Miller GE, Etter BD, Dorsi JM. A multiple disk centrifugal pump as a blood flow device. IEEE Trans. Biomed. Eng. 1990; 37 (2): 157–163.

15. Miller GE, Sidhu A, Fink R et al. Evaluation of a multiple disk centrifugal pump as an artificial ventricle. Artificial Organs. 1993; 17 (7): 590–592.

16. Miller GE, Madigan M, Fink R. A preliminary flow visualization study in a multiple disk centrifugal artificial ventricle. Artificial Organs. 1995; 19 (7): 680–684.

17. Miller GE, Fink R. Analysis of optimal design configurations for a multiple disk centrifugal blood pump. Artificial Organs. 1999; 23 (6): 559–565.

18. Izraelev V, Weiss WJ, Fritz B et al. A passive-suspended Tesla pump left ventricular assist device. ASAIO Journal. 2009; 55 (6): 556–561.

19. Medvitz RB, Boger DA, Izraelev V et al. CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device. Artificial Organs. 2011; 35 (5): 522–533.

20. Конышева ЕГ и др. Стендовые исследования имплантируемого осевого насоса крови. Медицинская техника. 2010; 6: 264. Konysheva EG i dr. Stendovye issledovanija implantiruemogo osevogo nasosa krovi. Medicinskaja tehnika. 2010; 6: 264.


Review

For citations:


Chernyavskiy A.M., Ruzmatov T.M., Fomichev A.V., Medvedev A.E., Prikhodko Yu.M., Fomin V.M., Fomichev V.P., Lomanovich K.A., Karaskov A.M. Experimental evaluation of mechanical heart support system based on viscous friction disc pump. Russian Journal of Transplantology and Artificial Organs. 2017;19(1):28-34. (In Russ.) https://doi.org/10.15825/1995-1191-2017-1-28-34

Views: 3825


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)