THE EXPERIMENTAL MODEL OF DISC-PUMP FOR MECHANICAL CIRCULATORY SUPPORT
https://doi.org/10.15825/1995-1191-2016-4-93-101
Abstract
The relevance of the use of circulatory support systems for the treatment of chronic heart failure (CHF) has increased over the recent years. Up to 20% of the patients from the waiting list for a donor heart die each year before they could get one. In our country, there is a huge need for mechanical heart support systems. However, the acquisition of foreign systems is associated with the excessive fi nancial costs. In addition, nowadays, there is no system that would meet all medical and technical requirements in full, and at the same time, would be of high safety for the patient. Therefore, research on the development of the systems of auxiliary circulation is highly relevant and is in demand in our country. One of the promising directions in this fi eld is disk pumps of viscous friction, which are based on the operation principle of Tesla disk pump. This article describes the creation and operation of the current model of the disk pump. The results of the bench tests confirmed that the expendable pressure characteristics of our disk pump are capable of providing the necessary parameters of blood circulation. The findings confi rm the perspective of the selected research area and provide the basis for further development and testing of this model of pump.
About the Authors
A. M. ChernyavskiyRussian Federation
T. M. Ruzmatov
Russian Federation
Address: 15, Rechkunovskaya st., 630055 Novosibirsk, Russian Federation. Tel. (960) 785-47-92
A. V. Fomichev
Russian Federation
A. E. Medvedev
Russian Federation
Y. M. Prikhodko
Russian Federation
V. M. Fomin
Russian Federation
V. P. Fomichev
Russian Federation
V. P. Chekhov
Russian Federation
References
1. Фомин ИВ, Фомин КВ, Беленков ЮН и др. Распространенность хронической сердечной недостаточности в Европейской части Российской Федерации – данные ЭПОХА-ХСН. Сердечная недостаточность. 2006; 7 (3): 112–115. Fomin IV, Fomin KV, Belenkov YuN i dr. Rasprostranennost’ hronicheskoj serdechnoj nedostatochnosti v Evropejskoj chasti Rossijskoj Federacii – dannye EHPOHA-HSN. Serdechnaya nedostatochnost’. 2006; 7 (3): 112–115.
2. Беленков ЮН, Фомин ИВ, Мареев ВЮ. Первые результаты Российского эпидемиологического исследования по ХСН. Сердечная недостаточность. 2003; 4 (11): 26–30. Belenkov YuN, Fomin IV, Mareev VYu. Pervye rezul’taty Rossijskogo ehpidemiologicheskogo issledovaniya po HSN. Serdechnaya nedostatochnost’. 2003; 4 (11): 26–30.
3. Даниелян МО. Прогноз и лечение хронической сер-дечной недостаточности (данные 20-летнего наблюдения). Медицинские науки. 2001: 36–33. Danielyan MO. Prognoz i lechenie hronicheskoj serdechnoj nedostatochnosti (dannye 20-letnego nablyudeniya). Medicinskie nauki. 2001: 36–33.
4. Мареев ВЮ, Агеев ФТ, Арутюнов ГП и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Сердечная недостаточность. 2013; 14 (7): 379–472. Mareev VYu, Ageev FT, Arutyunov GP i dr. Nacional’nye rekomendacii OSSN, RKO i RNMOT po diagnostike i lecheniyu HSN (chetvertyj peresmotr). Serdechnaya nedostatochnost’. 2013; 14 (7): 379–472.
5. Stehlik J, Edwards LB. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report – 2012. The Journal of heart and lung transplantation. 2012; 31 (10): 1052–1064.
6. Готье СВ, Мойсюк ЯГ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2013 году (VI сообщение регистра Российского трансплантологического общества). Вестник трансплантологии и искусственных органов. 2014; XVI (2): 5–23. Gautier SV, Moysyuk YaG, Khomyakov SM. Organ donation and transplantation in the Russian Federation in 2013 6th report of National Register. Vestnik transplantologii I iskusstvennykh organov = Russian journal of transplantology and artifi cial organs. 2014; XVI (2): 5–23 [English abstract].
7. Garbade J, Bittner HB, Barten MJ et al. Current Trends in Implantable Left Ventricular Assist Devices. Cardiology Research and Practice. 2011; Vol. 2011, Article ID 290561, 9 pages, 2011. doi:10.4061/2011/290561.
8. Чернявский АМ, Ефремова ОС, Рузматов ТМ и др. Предикторы отдаленной летальности больных ишемической болезнью сердца с выраженной левожелудочковой дисфункцией. Патология кровообращения и кардиохирургия. 2015; 19 (2): 49–55. Cherniavsky AM, Yefremova OS, Ruzmatov TM et al. Predictors of remote mortality of CHD patients with severe left ventricular dysfunction. Circulation Pathology and Cardiac Surgery. 2015; 19 (2): 49–54 [English abstract].
9. Dembitsky WP, Tector AJ, Park S et al. Left ventricular assist device performance with long-term circulatory support: lessons from the REMATCH trial. The Annals of thoracic surgery. 2004; 78 (6): 2123–2130.
10. Magliato KE et al. Biventricular support in patients with profound cardiogenic shock: a single center experience. ASAIO Journal. 2003; 49: 475–479.
11. Иткин ГП. Устройства для вспомогательного кровообращения: прошлое, настоящее и будущее непульсирующих насосов. Вестник трансплантологии и искусственных органов. 2009; 11 (3): 81–87. Itkin GР. Ventricle assist device: past, present, and future nonpulsatile pumps. Vestnik transplantologii i iskusstvennykh organov = Russian journal of transplantology and artificial organs. 2009; 11 (3): 81–87 [English abstract].
12. Tesla N. Fluid propulson. U.S. Patent 1,061,206, 1913.
13. Медведев АЕ, Фомин ВМ. Двухфазная модель течения крови в крупных и мелких сосудах. Доклады Академии наук. 2011; 441 (4): 476–479. Medvedev AE, Fomin VM. Dvuhfaznaya model’ techeniya krovi v krupnyh i melkih sosudah. Doklady Akademii nauk. 2011; 441 (4): 476–479.
14. Медведев АЕ. Двухфазная модель течения крови. Российский журнал биомеханики. 2013; 17, № 4 (62): 22–36. Medvedev AE. Dvuhfaznaja model’ techenija krovi. Rossijskij zhurnal biomehaniki. 2013; 17, № 4 (62): 22–36.
15. Miller GE, Etter BD, Dorsi JM. A multiple disk centrifugal pump as a blood fl ow device. IEEE Trans. Biomed. Eng. 1990; 37 (2): 157–163.
16. Miller GE, Sidhu A, Fink R et al. Evaluation of a multiple disk centrifugal pump as an artifi cial ventricle. Artificial Organs. 1993; 17 (7): 590–592.
17. Miller GE, Madigan M, Fink R. A preliminary fl ow visualization study in a multiple disk centrifugal artificial ventricle. Artifi cial Organs. 1995; 19 (7): 680–684.
18. Miller GE, Fink R. Analysis of optimal design configurations for a multiple disk centrifugal blood pump. Artificial Organs. 1999; 23 (6): 559–565.
19. Izraelev V, Weiss WJ, Fritz B et al. A passive-suspended Tesla pump left ventricular assist device. ASAIO Journal. 2009; 55 (6): 556–561.
20. Medvitz RB, Boger DA, Izraelev V et al. CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device. Artifi cial Organs. 2011; 35 (5): 522–533.
21. Batista M. Steady flow of incompressible fluid between two co-rotating disks. Applied Mathematical Modelling. 2011; 35: 5225–5233.
22. Мисюра ВИ, Овсянников БВ, Присняков ВФ. Дисковые насосы. М.: Машиностроение, 1986. Misjura VI, Ovsjannikov BV, Prisnjakov VF. Diskovye nasosy. M.: Mashinostroenie, 1986.
23. Jhun C-S, Newswanger R, Cysyk J et al. Tesla-Based Blood Pump and Its Applications. Transactions of the ASME. 2013; 7: 040917-2.
24. Papaioannou TG, Stefanadis C. Vascular Wall Shear Stress: Basic Principles and Methods. Hellenic Journal of Cardiology. 2005; 46 (1): 9–15.
Review
For citations:
Chernyavskiy A.M., Ruzmatov T.M., Fomichev A.V., Medvedev A.E., Prikhodko Y.M., Fomin V.M., Fomichev V.P., Chekhov V.P. THE EXPERIMENTAL MODEL OF DISC-PUMP FOR MECHANICAL CIRCULATORY SUPPORT. Russian Journal of Transplantology and Artificial Organs. 2016;18(4):93-101. (In Russ.) https://doi.org/10.15825/1995-1191-2016-4-93-101