TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE
https://doi.org/10.15825/1995-1191-2015-3-50-57
Abstract
Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.
Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs) were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically.
Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.
Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.
About the Authors
D. V. GrizayRussian Federation
A. S. Lebedinsky
Russian Federation
O. V. Ochenashko
Russian Federation
O. Yu. Rogulska
Russian Federation
Yu. A. Petrenko
Russian Federation
23, Pereyaslavskaya str., Kharkov 61015, Ukraine. Tel. +38 (057) 373-41-35
V. I. Lozinsky
Russian Federation
R. V. Ivanov
Russian Federation
A. Yu. Petrenko
Russian Federation
References
1. Soltys KA, Soto-Gutiérrez A, Nagaya M, Baskin KM, Deutsch M, Ito R et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J. Hepatol. 2010; 53: 769–774.
2. Fuller BJ, Petrenko AY, Rodriguez JV, Somov AY, Balaban CL, Guibert EE. Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrifi cation. CryoLetters. 2013; 34: 432–452.
3. Zhou P1, Lessa N, Estrada DC, Severson EB, Lingala S, Zern MA et al. Decellularized Liver Matrix as a Carrier for Transplantation of Human Fetal and Primary Hepatocytes in Mice. Liver Transpl. 2011; 17: 418–427.
4. Glicklis R1, Shapiro L, Agbaria R, Merchuk JC, Cohen S. Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds. Biotechnology and Bioengineering. 2000; 67: 344–353.
5. Шагидулин МЮ, Онищенко НА, Крашенинников МЕ, Ильинский ИМ, Люндуп АВ, Севастьянов ВИ и др. Трансплантация клеточно-инженерных конструкций в печень обеспечивает длительную поддержку процессов восстановительной регенерации в поврежденной печени. Вестник трансплантологии и искусственных органов. 2013; 2: 65–75. Shagidulin MY, Onischenko NA, Krasheninnikov ME, Iljinsky IM, Lyundup AV, Sevastyanov VI et al. Cellengineering designs transplanted into liver provide with prolonged support of recovery processes in damaged liver. Vestnik transplantologii i iskusstvennyh organov. 2013; 2: 65–75.
6. Petrenko YA, Ivanov RV, Petrenko AY, Lozinsky VI. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, rowth and differentiation of human bone marrow mesenchymal stromal cells. J. Mater. Sci: Mater Med. 2011; 22:1529–1540.
7. Dollé L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA et al. The quest for liver progenitor cells: A practical point of view. J. Hepatol. 2010; 52: 117–129.
8. Petrenko YA, Jones DRE, Petrenko AY. Cryopreservation of human fetal liver hematopoietic stem/progenitor cells using sucrose as an additive to the cryoprotective medium. Cryobiology. 2008; 57: 195–200.
9. Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am. J. Pathol. 2001; 159: 1323–1334.
10. Dabeva MD, Petkov PM, Sandhu J, Oren R, Laconi E, Hurston E et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am. J. Pathol. 2000; 156: 2017–2031.
11. Oertel M, Menthena A, Chen YQ, Shafritz DA. Properties of cryopreserved fetal liver stem/progenitor cells that exhibit long-term repopulation of the normal rat liver. Stem Cells. 2006; 24: 2244–2251.
12. Ohashi K. Liver tissue engineering: the future of liver therapeutics. Hepatol. Res. 2008; 38: S76–S87.
13. Sakai Y, Huang H, Hanada S, Niino T. Toward engineering of vascularized three-dimensional liver tissue equivalents possessing a clinically signifi cant mass. Biochem. Eng. J. 2010; 48: 348–361.
14. Petrenko AYu, Sukach AN. Isolation of intact mitochondria and hepatocytes using vibration. Analytical Biochem. 1991; 194: 326–332.
15. Skorobogatova NG, Novikov AN, Fuller BJ, Petrenko AY. Importance of a three-stage cooling regime and induced ice nucleation during cryopreservation on colony-forming potential and differentiation in mesenchymal stem/ progenitor cells from human fetal liver. CryoLetters. 2010; 31: 371–379.
16. Петренко ЮА, Иванов РВ, Лозинский ВИ, Петренко АЮ. Сравнительное исследование методов заселения широкопористых носителей на основе альгинатного криогеля мезенхимальными стромальными клетками костного мозга человека. Клеточные технологии в биологии и медицине. 2010; 4: 225–228. Petrenko YA, Ivanov RV, Lozinsky VI, Petrenko AY. Comparison of the methods for seeding human bone marrow mesenchymal stem cells to macroporous alginate cryogel carriers. Bull Exp Biol Med. 2010; 4: 225–228.
17. Zhang W, Chen XP, Zhang WG, Zhang F, Xiang S, Dong HH et al. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration. World J Gastroenterol. 2009; 15: 552–560.
18. Ochenashko O., Nikitchenko Yu., Volkova N, Mazur SP, Somov AY, Fuller BJ et al. Functional hepatic recovery after xenotransplantation of cryopreserved fetal liver cells or soluble cell-factor administration in a cirrhotic rat model – are viable cells necessary? Journal of Gastroenterology and Hepatology. 2008; 23: e275–282.
Review
For citations:
Grizay D.V., Lebedinsky A.S., Ochenashko O.V., Rogulska O.Yu., Petrenko Yu.A., Lozinsky V.I., Ivanov R.V., Petrenko A.Yu. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE. Russian Journal of Transplantology and Artificial Organs. 2015;17(3):50-57. (In Russ.) https://doi.org/10.15825/1995-1191-2015-3-50-57