COMPARATIVE ANALYSIS OF THREE-DIMENSIONAL NANOSTRUCTURE OF POROUS BIOCOMPATIBLE SCAFFOLDS MADE OF RECOMBINANT SPIDROIN AND SILK FIBROIN FOR REGENERATIVE MEDICINE
https://doi.org/10.15825/1995-1191-2015-2-37-44
Abstract
Aim. To perform a comparison of three-dimensional nanostructure of porous biocompatible scaffolds made of fibroin Bombix mori and recombinant spidroin rS1/9. Materials and methods. Three-dimensional porous scaffolds were produced by salt leaching technique. The comparison of biological characteristics of the scaffolds shows that adhesion and proliferation of mouse fibroblasts in vitro on these two types of scaffolds do not differ significantly. Comparative experiments in vivo show that regeneration of bone tissue of rats is faster with implantation of recombinant spidroin scaffolds. Three-dimensional nanostructure of scaffolds and interconnectivity of nanopores were studied with scanning probe nanotomography (SPNT) to explain higher regenerative activity of spidroin-based scaffolds. Results. Significant differences were detected in the integral density and volume of pores: the integral density of nanopores detected on 2D AFM images is 46 μm–2 and calculated volume porosity is 24% in rS1/9-based scaffolds; in fibroin-based three-dimensional structures density of nanopores and calculated volume porosity were 2.4 μm–2 and 0.5%, respectively. Three-dimensional reconstruction system of nanopores and clusters of interconnected nanopores in rS1/9-based scaffolds showed that volume fraction of pores interconnected in percolation clusters is 35.3% of the total pore volume or 8.4% of the total scaffold volume. Conclusion. Scanning probe nanotomography method allows obtaining unique information about topology of micro – and nanopore systems of artificial biostructures. High regenerative activity of rS1/9-based scaffolds can be explained by higher nanoporosity of the scaffolds.
About the Authors
O. I. AgapovaRussian Federation
A. E. Efimov
Russian Federation
M. M. Moisenovich
Russian Federation
V. G. Bogush
Russian Federation
I. I. Agapov
Russian Federation
For correspondence: Agapov Igor Ivanovich. Address: 123182, Moscow, Schukinskaya st., 1. Tel. (499) 190-66-19. E-mail: igor_agapov@mail.ru.
References
1. Manzano A, Monaghan M, Potrata B, Clayton M. The invisible issue of organ laundering. Transplantation. 2014; 98: 600–603. DOI: 10.1097/TP.0000000000000333.
2. van Uden S, Silva-Correia J, Correlo VM et al. Customtailored tissue engineered polycaprolactone scaffolds for total disc replacement. Biofabrication. 2015; 7: 015008. DOI: 10.1088/1758-5090/7/1/015008 (in press).
3. Balyura M, Gelfgat E, Ehrhart-Bornstein M et al. Transplantation of bovine adrenocortical cells encapsulated in alginate. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112: 2527–2532. DOI: 10.1073/pnas.1500242112.
4. An B, Tang-Schomer MD, Huang W He J, Jones JA, Lewis RV et al. Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks. Biomaterials. 2015; 48: 137–146. DOI: 10.1016/j.biomaterials.2015.01.044.
5. Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG et al. A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. Journal of neuroimmune pharmacology. 2009; 4: 17–27. DOI: 10.1007/s11481-008-9129-z.
6. Sheikh FA, Ju HW, Moon BM, Lee OJ, Kim JH, Park HJ et al. Hybrid scaffolds based on PLGA and silk for bone tissue engineering. Journal of tissue engineering and regenerative medicine. 2015. DOI: 10.1002/term.1989 (in press).
7. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly (lactic-co-glycolic acid) nanofibrous mats. ACS applied materials & interfaces. 2015. DOI: 10.1021/acsami.5b00862 (in press).
8. Carballo-Molina OA, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in cellular neuroscience. 2015; 9: 13. DOI: 10.3389/fncel.2015.00013 (in press).
9. Jeffries EM, Allen RA, Gao J, Pesce M, Wang Y. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta biomaterialia. 2015. DOI: 10.1016/j.actbio.2015.02.005 (in press).
10. Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Materials science & engineering C. Materials for biological applications. 2015; 49: 776–785. DOI: 10.1016/j.msec.2015.01.075.
11. Campinez MD, Ferris C, de Paz MV, Aguilar-de-Leyva A, Galbis J, Caraballo I. A new biodegradable polythiourethane as controlled release matrix polymer. International journal of pharmaceutics. 2015; 480: 63–72. DOI: 10.1016/j.ijpharm.2015.01.011.
12. Niu Y, Li L, Chen KC, Chen F, Liu X, Ye J et al. Scaffolds from alternating block polyurethanes of poly(varepsiloncaprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft. Journal of biomedical materials research Part A. 2014. DOI: 10.1002/jbm.a.35372 (in press).
13. Moisenovich MM, Pustovalova OL, Arhipova AY, Vasiljeva TV, Sokolova OS, Bogush VG et al. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. Journal of biomedical materials research Part A. 2011; 96: 125–131. DOI: 10.1002/ jbm.a.32968.
14. Efimov AE, Tonevitsky AG, Dittrich M, Matsko NB. Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. Journal of Microscopy. 2007; 226 (3): 207–217. DOI: 10.1111/j.1365-2818.2007.01773.x.
15. Mochalov KE, Efim ov AE, Bobrovsky A, Agapov II, Chistyakov AA, Oleinikov VA et al. Combined Scanning Probe Nanotomography and Optical Microspectroscopy: A Correlative Technique for 3D Characterization of Nanomaterials, ACS Nano. 2013; 7 (10): 8953–8962. DOI: 10.1021/nn403448p.
16. Scher H, Zallen R. Critical density in percolation processes. J. Chem. Phys. 1970; 53: 3759–3761. DOI: 10.1063/1.1674565.
17. Hunt A, Ewing R. Percolation Theory for Flow in Porous Media, Lect. Notes Phys. Springer: Berlin Heidelberg, 2009; 771.
18. Wang Q, Chen Q, Yang Y, Shao Z. Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules. 2013; 14: 285–289. DOI: 10.1021/bm301741q.
19. Sokolova OS, Bogush VG, Davydova LI, Polevova SV, Antonov SA, Neretina TV et al. The formation of a quaternary structure by recombinant analogs of spider silk proteins. Molecular Biology. 2010; 44: 150–157. DOI: 10.1134/S0026893310010188.
20. Агапов ИИ, Мойсенович ММ, Васильева ТВ, Пустовалова ОЛ, Коньков АС, Архипова АЮ и др. Биодеградируемые матриксы из регенерированного шелка bombix mori. Доклады Академии наук. 2010; 433 (5): 699–702. Agapov II, Moysenovich MM, Vasil'eva TV, Pustovalova OL, Kon'kov AS, Arhipova AYu et al. Biodegradiruemye matriksy iz regenerirovannogo shelka bombix mori. Doklady Akademii nauk. 2010; 433 (5): 699–702.
21. Биосовместимые материалы: Учебное пособие / Под. ред. В.И. Севастьянова, М.П. Кирпичникова. М.: Медицинское информационное агентство, 2011: 544. Biosovmestimye materialy: Uchebnoe posobie / Pod. red. V.I. Sevast'yanova, M.P. Kirpichnikova. M.: Medicinskoe informacionnoe agentstvo, 2011: 544
Review
For citations:
Agapova O.I., Efimov A.E., Moisenovich M.M., Bogush V.G., Agapov I.I. COMPARATIVE ANALYSIS OF THREE-DIMENSIONAL NANOSTRUCTURE OF POROUS BIOCOMPATIBLE SCAFFOLDS MADE OF RECOMBINANT SPIDROIN AND SILK FIBROIN FOR REGENERATIVE MEDICINE. Russian Journal of Transplantology and Artificial Organs. 2015;17(2):37-44. (In Russ.) https://doi.org/10.15825/1995-1191-2015-2-37-44