SURVIVAL OF LIVER CELLS, IMMOBILIZED ON 3D-MATRIXES, IN LIVER FAILURE MODEL
https://doi.org/10.15825/1995-1191-2011-3-59-66
Abstract
It was examined a new method for correction of hepatic failure by transplantation of liver support biounit (liver cells, immobilized on biocompatible and biodegradable 3D-matrixes ElastoPOB®) into small intestine mesentery. It was determined that after modeling of acute hepatic failure on dogs by 65–70% liver resection) and transplantation liver support biounit the restoration of disturbed biochemical indecies (such as total protein, lactate, cytolytic ensymes-ALT, AST, ALP, LDH, fibrinogen, protrombine index and others) took place more rapidly on 9–14th day instead of 18th day in control.
It was made a preposition about efficiency of the suggested method for correction both acute hepatic failure because even 90 days after transplantation of liver support biounit alive hepatocytes and neogenic plethoric vessels, growing through matrix were revealed.
About the Authors
M. Y. ShagidulinRussian Federation
N. A. Onishchenko
Russian Federation
M. E. Krasheninnikov
Russian Federation
I. M. Iljinsky
Russian Federation
N. P. Mogeiko
Russian Federation
N. P. Shmerko
Russian Federation
A. A. Andriyanova
Russian Federation
P. V. Avramov
Russian Federation
E. A. Nemets
Russian Federation
V. I. Sevastjanov
Russian Federation
S. V. Gautier
Russian Federation
References
1. Блюгер А.Ф., Новицкий И.Н. Практическая гепатоло- гия // Рига: Звайгзне, 1984. 405 с.
2. Дифференциальная диагностика и лечение внутрен- них болезней: Руководство для врачей. Т. 2. Болезни органов пищеварения / Под ред. А.И. Хазанова. М., 2003. С. 281–306.
3. Севастьянов В.И., Егорова В.А., Немец Е.А., Перо- ва Н.В., Онищенко Н.А. Биодеградируемый биополи- мерный материал ЭластоПОБ® для клеточной транс- плантации // Перспективные материалы. 2004. No 3. С. 35–41.
4. Севастьянов В.И., Немец Е.А., Волкова Т.Г., Мар- ковцова М.Г. Трехмерные пористые матриксы для трансплантации клеток на основе биодеградируе- мого бактериального сополимера «Биопластотан» // Перспективные материалы. 2007. No 6. С. 5–10.
5. Севастьянов В.И., Перова Н.В., Довжик И.А. и др. Медико-биологические свойства полиоксиалканоа- тов – биодеградируемых бактериальных полимеров // Перспективные материалы. 2001. No 5. С. 46–55.
6. Шумаков В.И. Достижения и перспективы развития трансплантологии и искусственных органов в Рос- сии // Вестник трансплантологии и искусственных органов. 2005. No 3. С. 6–9.
7. Fiegel H.C., Kaufmann P.M., Kneser U., Kluth D., Ro- giers X. Priming of hepatocytes for cell culture by partial hepatectomy prior to cell isolation // Tissue Eng. 2000. Vol. 6 (6). P. 619–626.
8. Kahn D., Hickman R., Terblanche J., von Sommoggy S. Partial hepatectomy and liver regeneration in pigs – the response to different resection sizes // Nippon Geka Gak- kai Zasshi. 1986. Vol. 87 (5). P. 536–546.
9. Kobayashi J., Takeyoshi I., Ohwada S., Morishita Y. et al. The effects of FR167653 in extended liver resec- tion with ischemia in dogs // Hepatology. 1998. Vol. 28, No 2. P. 459–465.
10. Mooney D.J., Sano K., Kaufmann P.M., Vacanti J.P., Langer R. Long-term engraftment of hepatocytes trans- planted o biodegradable polymer sponges // J. Biomed. Mater. Res. 1997. Vol. 5. P. 413–420.
11. Ohashi K., Park F.,·Kay M.A. Hepatocyte transplanta- tion: clinical and experimental application // J. Mol. Med. 2001. Vol. 79. Р. 617–630.
12. Pereira S.P., Williams R. et al. Limits to liver transplan- tation in the UK // Gut. 2008. Vol. 42. Р. 883–885.
13. Pietrosi G., Vizzini G.B, Gruttadauria S., Gridelli B. Clinical applications of hepatocyte transplantation // World J. Gastroenterol. 2009. Vol. 7. P. 2074.
14. Sevastianov V.I., Perova N.V., Shishatskaya E.I., Ka- lacheva G.S., Volova T.G. Production of purified polyhy- droxyalkanoates (PHAs) for applications in contact with blood // J. Biomater. Sci. Polymer Edn. 2003. Vol. 14 (10). P. 1029–1042.
15. Siman J., Payer J., Stojkovic J., Cerný J. Hemodynam- ics of the liver. II. Hemodynamics of the dog liver af- ter resection of 70% of the liver and ligation of the left branch of the portal vein // Z. Exp. Chir. 1979. Vol. 12 (2). P. 113–118.
16. Uyama S., Kaufmann P.M., Takeda T., Vacanti J.P. De- livery of whole liver equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation // Trans- plantation. 1993. Vol. 55. P. 932–935.
17. Uyama S., Kaufman P., Kneser U., Vacanti J., Rodrig- es X. Hepatocyte transplantation using biodegradable matrices in ascorbic acid-deficient rats: comparsion with heterotropically transplanted liver grafts // Transplanta- tion. 2001. Vol. 7. Р. 1–7.
18. Van de Kerkhove M.P., Hoekstra R., Chamuleau R.A., van Gulik T.M. Clinical application of bioartificial liver support systems // Ann. Surg. 2004. Vol. 240. Р. 216– 230.
19. Volova T., Shishatskaya E., Sevastianov V., Efremov S., Mogilnaya O. Results of biomedical investigations of PHB and PHB/PHV fibers // Biochem. Eng. J. 2003. No 3736. P. 1–9.
20. www.eurotransplant.nl/files/statistics.
Review
For citations:
Shagidulin M.Y., Onishchenko N.A., Krasheninnikov M.E., Iljinsky I.M., Mogeiko N.P., Shmerko N.P., Andriyanova A.A., Avramov P.V., Nemets E.A., Sevastjanov V.I., Gautier S.V. SURVIVAL OF LIVER CELLS, IMMOBILIZED ON 3D-MATRIXES, IN LIVER FAILURE MODEL. Russian Journal of Transplantology and Artificial Organs. 2011;13(3):59-66. (In Russ.) https://doi.org/10.15825/1995-1191-2011-3-59-66