Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

NEW METHODS FOR IMPLANT MATRIX FORMATION BASED ON ELECTROSPINNING AND BIOPRINTING TECHNOLOGIES

https://doi.org/10.15825/1995-1191-2009-2-47-53

Abstract

New implant materials for regenerative and replacement surgery based on biodegradable polymers like collagens and polyoxybutirates are developed. Porous structures with controllable morphology were formed from biodegradable polymers using electrospinning and bioprinting technologies. The matrixes were studied by visible and electron scanning microscopy as well as INTEGRA Tomo scanning probe platform making possible the restoration of inner 3D structure of polymer matrix. 

About the Authors

V. N. Vasilets
Institute of Biomedical Research and Technology, Moscow
Russian Federation


I. V. Kazbanov
Institute of Biomedical Research and Technology, Moscow
Russian Federation


A. E. Efimov
Institute of Biomedical Research and Technology, Moscow
Russian Federation


V. I. Sevastianov
Academician V.I. Schumakov Federal Research Center of Transplantology and Artificial Organs, Moscow
Russian Federation


References

1. Волова Т.Г., Севастьянов В.И., Шишацкая Е.И. По- лиоксиалканоаты (ПОА) – биоразрушаемые полиме- ры для медицины / Под ред. В.И. Шумакова. Новоси- бирск: Изд. СО РАН, 2003. 330 с.

2. Хилькин А.М., Шехтер А.Б., Истранов Л.П., Леме- нев В.Л. Коллаген и его применение в медицине. М.: Медицина, 1976. 210 с.

3. Boland T., Mironov V., Gutowska A., Roth E.A., Mar- kwald R.R. Cell and Organ Printing 2: Fusion of Cell Ag- gregates in Three-Dimensional Gels // The Anatomical record Part A. 2003. V. 272A. P. 497–502.

4. Jakab K., Norotte C., Damon B., Marga F. et al. Tis- sue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures // Tissue Engineering Part A. 2008. V. 14. No 3. P. 413–421.

5. Ho M.-H., Kuo P.-Y., Hsieh H.-J., Hsieh T.-Y. et al. Pre- paration of porous scaffolds by using freeze-extraction and freezegelation methods // Biomaterials. 2004. V. 25. P. 129–138.

6. Hohman M.M., Shin M., Rutledge G., Brenner M.P. Elec- trospinning and electrically forced jets. I. Stability the- ory // Physics of Fluids. 2001. V. 13. No 8. P. 231–238.

7. Li M., Guo Y., Wei Y., MacDiarmid A.G., Lelkes P.I. Elec- trospinning polyaniline-contained gelatin nanofibers for

8. tissue engineering applications // Biomaterials. 2006.

9. V. 27. P. 2705–2715.

10. Ponticiello M.S., Schinagl R.M., Kadiyala S., Barry P.

11. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regenera- tion therapy // J. Biomed. Mater. Res. 2000. V. 52 (2). P. 246–255.

12. Mironov V., Prestwich G., Forgacs G. Bioprinting li- ving structures // J. Mater. Chem. 2007. V. 17. P. 2054– 2060.

13. Sumerel J., Lewis J., Doraiswamy A., Deravi L.F. et al. Piezoelectric ink jet processing of materials for medical and biological applications // Biotechnol. J. 2006. V. 1. P. 976–987.

14. Wilson W.C., Boland T. Cell and Organ Printing 1: Pro- tein and Cell Printers // The anatomical record Part A. 2003. V. 272A. P. 491–496.

15. Zonga X., Bienc H., Chungc Y.C. et al. Electrospun fine- textured scaffolds for heart tissue constructs // Biomate- rials. 2005. V. 26. P. 5330–5338.


Review

For citations:


Vasilets V.N., Kazbanov I.V., Efimov A.E., Sevastianov V.I. NEW METHODS FOR IMPLANT MATRIX FORMATION BASED ON ELECTROSPINNING AND BIOPRINTING TECHNOLOGIES. Russian Journal of Transplantology and Artificial Organs. 2009;11(2):47-53. (In Russ.) https://doi.org/10.15825/1995-1191-2009-2-47-53

Views: 1145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)