Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Urgent LVAD implantation in children on peripheral VA-ECMO support

https://doi.org/10.15825/1995-1191-2025-4-74-86

Abstract

Background. Heart transplantation (HT) remains the primary surgical treatment for children with end-stage chronic heart failure (CHF). More than 30% of pediatric HT candidates require shortor long-term mechanical circulatory support (MCS) due to refractoriness to medical therapy. In recent years, the use of left ventricular assist device (LVAD) systems has expanded not only in teenagers and middle-aged children but also in younger and smaller patients.

Objective: to investigate the perioperative course of emergency LVAD implantation in children with critical hemodynamic compromise (INTERMACS profile I) requiring short-term MCS via peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO).

Materials and methods. We studied 25 patients under 18 years of age (12 girls, 48.0%; 13 boys, 52.0%) who had a HeartMate III LVAD LVAD implanted between January 1, 2021, and June 30, 2024. The severity of pre-implantation CHF was classified according to INTERMACS profiles: I (n = 4, 16.0%), II (n = 9, 36.0%), and III (n = 12, 48.0%). Patients were divided into two groups based on the need for VA-ECMO prior to LVAD implantation: the VA-ECMO–LVAD group (n = 4, 16.0%) and the LVAD group (n = 21, 84.0%).

Results. The VA-ECMO–LVAD group (n = 4) did not differ significantly from the LVAD group (n = 21) in age, sex, or underlying disease. Intraoperatively, there were no significant differences between groups in the duration of cardiopulmonary bypass, doses of sympathomimetic cardiotonics, or the use of inhaled nitric oxide. The VA-ECMO–LVAD group showed a trend toward greater intraoperative blood loss and transfusion requirements (p > 0.05). In the postoperative period, blood loss volumes were similar between groups. However, patients in the VA-ECMO–LVAD group more frequently required re-sternotomy (25% vs 9.5%, p < 0.05), had a longer duration of postoperative mechanical ventilation (1.79-fold, p < 0.05), more often required renal replacement therapy (2.5-fold, p = 0.166), and had significantly longer ICU stays (2.75-fold, p = 0.041). In the VA-ECMO–LVAD group, the incidence of severe acute right ventricular dysfunction was significantly higher (25.0% vs 9.5%, p = 0.016). No significant difference in postoperative hospital mortality was observed between the two groups.

Conclusion. Emergency implantation of an LVAD system in children with critical hemodynamic instability requiring preoperative short-term MCS using peripheral VA-ECMO has demonstrated high effectiveness. However, careful consideration should be given to the presence and severity of multiple organ dysfunction before and after LVAD implantation, as well as perioperative blood loss. These factors largely determine the anesthetic and resuscitative management strategies, as well as the immediate outcomes of long-term MCS.

About the Authors

V. N. Poptsov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Vitaly Poptsov

Address: 1, Shchukinskaya str., Moscow, 123182



Ya. S. Karina
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



D. V. Ryabtsev
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



E. A. Spirina
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. A. Kuznetsova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



V. V. Kolyadina
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. Ch. Chartaev
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. S. Epremian
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. K. Solodovnikova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. S. Ignatkina
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



References

1. Cleveland JD, Kumar SR. Current opinion in pediatric heart transplantation. Curr Opin Organ Transplant. 2021 Jun 1; 26 (3): 290–295. doi: 10.1097/MOT.0000000000000870. PMID: 33938465.

2. Hetzer R, Javier MFDM, Delmo Walter EM. Role of paediatric assist device in bridge to transplant. Ann Cardiothorac Surg. 2018 Jan; 7 (1): 82–98. doi: 10.21037/acs.2018.01.03. PMID: 29492386; PMCID: PMC5827126.

3. O’Connor MJ, Lorts A, Davies RR, Fynn-Thompson F, Joong A, Maeda K et al. Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant. 2020 Jun; 39 (6): 573–579. doi: 10.1016/j.healun.2020.02.007. Epub 2020 Feb 13. PMID: 32111350.

4. Cabrera AG, Sundareswaran KS, Samayoa AX, Jeewa A, McKenzie ED, Rossano JW et al. Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. J Heart Lung Transplant. 2013 Nov; 32 (11): 1107–1113. doi: 10.1016/j.healun.2013.07.012. Epub 2013 Aug 31. PMID: 24002006.

5. Cao I, Italiano EG, Bertelli F, Motta R, Castaldi B, Pergola V et al. Intracorporeal LVAD implantation in pediatric patients: A single-center 10 years’ experience. Artif Organs. 2024 Apr; 48 (4): 408–417. doi: 10.1111/aor.14716. Epub 2024 Feb 21. PMID: 38380771.

6. Yang L, Ye L, Fan Y, He W, Zong Q, Zhao W, Lin R. Outcomes following venoarterial extracorporeal membrane oxygenation in children with refractory cardiogenic disease. Eur J Pediatr. 2019 Jun; 178 (6): 783–793. doi: 10.1007/s00431-019-03352-5. Epub 2019 Mar 4. PMID: 30834480.

7. Kurihara C, Kawabori M, Sugiura T, Critsinelis AC, Wang S, Cohn WE et al. Bridging to a Long-Term Ventricular Assist Device With Short-Term Mechanical Circulatory Support. Artif Organs. 2018 Jun; 42 (6): 589– 596. doi: 10.1111/aor.13112. Epub 2018 Feb 23. PMID: 29473181.

8. Peer SM, Koehl DA, Cantor RS, Kirklin JK, Sinha P. Effect of preoperative extracorporeal membrane oxygenation therapy on postventricular assist device outcomes: an analysis of the STS Pedimacs database. Eur J Cardiothorac Surg. 2022 Nov 3; 62 (6): ezac485. doi: 10.1093/ejcts/ezac485. PMID: 36227147.

9. Lamba HK, Kim M, Santiago A, Hudson S, Civitello AB, Nair AP et al. Extracorporeal membrane oxygenation as a bridge to durable left ventricular assist device implantation in INTERMACS-1 patients. J Artif Organs. 2022 Mar; 25 (1): 16–23. doi: 10.1007/s10047-021-01275-3. Epub 2021 May 13. PMID: 33982206.

10. Poptsov VN, Spirina EA, Ryabtsev DV, Solodovnikova AK, Epremian AS. Experience with percutaneous right ventricular support in the early post-left ventricular assist device implantation period (clinical case report and literature reviews). Russian Journal of Transplantology and Artificial Organs. 2023; 25 (1): 77–89. https://doi.org/10.15825/1995-11912023-1-77-89.

11. Jefferson HL, Kent WDT, MacQueen KT, Miller RJH, Holloway DD, Fatehi Hassanabad A. Left ventricular assist devices: A comprehensive review of major clinical trials, devices, and future directions. J Card Surg. 2021 Apr; 36 (4): 1480–1491. doi: 10.1111/jocs.15341. Epub 2021 Jan 21. PMID: 33476443.

12. Griffiths ER, Profsky MP, Mokshagundam D, Boucek K, Amdani S, Davies RR et al. Pedimacs Investigators. Eighth Annual Society of Thoracic Surgeons Pedimacs Report. Ann Thorac Surg. 2025 Mar; 119 (3): 513–522. doi: 10.1016/j.athoracsur.2024.12.020. Epub 2025 Jan 14. PMID: 39818264.

13. Peng DM, Davies RR, Simpson KE, Shugh SB, Morales DLS, Jacobs JP et al. Pedimacs Investigators. Seventh Annual Society of Thoracic Surgeons Pedimacs Report. Ann Thorac Surg. 2024 Apr; 117 (4): 690–703. doi: 10.1016/j.athoracsur.2023.11.035. Epub 2023 Dec 18. PMID: 38123046.

14. Nassar MS, Hasan A, Chila T, Schueler S, Pergolizzi C, Reinhardt Z et al. Comparison of paracorporeal and continuous flow ventricular assist devices in children: preliminary results. Eur J Cardiothorac Surg. 2017 Apr 1; 51 (4): 709–714. doi: 10.1093/ejcts/ezx006. PMID: 28329112.

15. Schweiger M, Hussein H, de By TMMH, Zimpfer D, Sliwka J, Davies B et al. Use of Intracorporeal Durable LVAD Support in Children Using HVAD or HeartMate 3-A EUROMACS Analysis. J Cardiovasc Dev Dis. 2023 Aug 17; 10 (8): 351. doi: 10.3390/jcdd10080351. PMID: 37623364; PMCID: PMC10455245.

16. Frigerio M. Left Ventricular Assist Device: Indication, Timing, and Management. Heart Fail Clin. 2021 Oct; 17 (4): 619–634. doi: 10.1016/j.hfc.2021.05.007. Epub 2021 Jul 22. PMID: 34511210.

17. Zubarevich A, Zhigalov K, Szczechowicz M, Arjomandi Rad A, Vardanyan R, Torabi S et al. Rescue extracorporeal life support as a bridge to durable left ventricular assist device. Int J Artif Organs. 2022 Apr; 45 (4): 371–378. doi: 10.1177/03913988211053874. Epub 2021 Oct 21. PMID: 34674570; PMCID: PMC8921882.

18. Molina EJ, Shah P, Kiernan MS, Cornwell WK 3rd, Copeland H, Takeda K et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg. 2021 Mar; 111 (3): 778–792. doi: 10.1016/j.athoracsur.2020.12.038. Epub 2021 Jan 16. PMID: 33465365.

19. Piffard M, Nubret-Le Coniat K, Simon O, Leuillet S, Rémy A, Barandon L, Ouattara A. Independent risk factors for ICU mortality after left ventricular assist device implantation. Artif Organs. 2020 Feb; 44 (2): 153– 161. doi: 10.1111/aor.13540. Epub 2019 Sep 2. PMID: 31318978.

20. Demirozu ZT, Hernandez R, Mallidi HR, Singh SK, Radovancevic R, Segura AM et al. HeartMate II left ventricular assist device implantation in patients with advanced hepatic dysfunction. J Card Surg. 2014 May; 29 (3): 419–423. doi: 10.1111/jocs.12318. Epub 2014 Mar 19. PMID: 24641429.

21. Han JJ, Chung J, Chen CW, Gaffey AC, Sotolongo A, Justice C et al. Different Clinical Course and Complications in Interagency Registry for Mechanically Assisted Circulatory Support 1 (INTERMACS) Patients Managed With or Without Extracorporeal Membrane Oxygenation. ASAIO J. 2018 May/Jun; 64 (3): 318–322. doi: 10.1097/MAT.0000000000000674. PMID: 28938306.

22. Schibilsky D, Haller C, Lange B, Schibilsky B, Haeberle H, Seizer P et al. Extracorporeal life support prior to left ventricular assist device implantation leads to improvement of the patients INTERMACS levels and outcome. PLoS One. 2017 Mar 30; 12 (3): e0174262. doi: 10.1371/journal.pone.0174262.

23. Fu HY, Chou HW, Lai CH, Tsao CI, Lu CW, Lin MT et al. Outcomes of pediatric patients supported with ventricular assist devices single center experience. J Formos Med Assoc. 2023 Feb; 122 (2): 172–181. doi: 10.1016/j.jfma.2022.09.008. Epub 2022 Oct 1. PMID: 36192294.

24. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013 Feb; 32 (2): 141–156. doi: 10.1016/j.healun.2012.12.004. Erratum in: J Heart Lung Transplant. 2015 Oct; 34 (10): 1356. Timothy Baldwin, J [corrected to Baldwin, JT]. PMID: 23352390.

25. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M, Young JB. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg. 2012 Sep; 144 (3): 584–603; discussion 597–598. doi: 10.1016/j.jtcvs.2012.05.044. Epub 2012 Jul 15. PMID: 22795459; PMCID: PMC3443856.

26. Boyle AJ, Ascheim DD, Russo MJ, Kormos RL, John R, Naka Y et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011 Apr; 30 (4): 402–407. doi: 10.1016/j.healun.2010.10.016. Epub 2010 Dec 18. PMID: 21168346.

27. Bermudez CA, Rocha RV, Toyoda Y, Zaldonis D, Sappington PL, Mulukutla S et al. Extracorporeal membrane oxygenation for advanced refractory shock in acute and chronic cardiomyopathy. Ann Thorac Surg. 2011 Dec; 92 (6): 2125–2131. doi: 10.1016/j.athoracsur.2011.07.029. Epub 2011 Oct 7. PMID: 21982150.

28. Shah P, Pagani FD, Desai SS, Rongione AJ, Maltais S, Haglund NA et al. Mechanical Circulatory Support Research Network. Outcomes of Patients Receiving Temporary Circulatory Support Before Durable Ventricular Assist Device. Ann Thorac Surg. 2017 Jan; 103 (1): 106–112. doi: 10.1016/j.athoracsur.2016.06.002. Epub 2016 Aug 28. PMID: 27577033.

29. Moisă ȘM, Burlacu A, Brinza C, Cinteză E, Butnariu LI, Țarcă E et al. An Up-to-Date Literature Review on Ventricular Assist Devices Experience in Pediatric Hearts. Life (Basel). 2022 Nov 30; 12 (12): 2001. doi: 10.3390/life12122001. PMID: 36556366; PMCID: PMC9788166.

30. Shugh SB, Riggs KW, Morales DLS. Mechanical circulatory support in children: past, present and future. Transl Pediatr. 2019 Oct; 8 (4): 269–277. doi: 10.21037/tp.2019.07.14. PMID: 31728319; PMCID: PMC6825962.

31. Abreu S, Brandão C, Trigo C, Rodrigues R, Pinto F, Fragata J. Mechanical circulatory support in children: Strategies, challenges and future directions. Rev Port Cardiol. 2022 May; 41 (5): 371–378. English, Portuguese. doi: 10.1016/j.repc.2021.03.011. Epub 2022 Mar 16. PMID: 36062636.

32. Kozik D, Alsoufi B. Pediatric mechanical circulatory support – a review. Indian J Thorac Cardiovasc Surg. 2023 Jul; 39 (Suppl 1): 80–90. doi: 10.1007/s12055-02301499-3. Epub 2023 Mar 27. PMID: 37525715; PMCID: PMC10386992.

33. Hoefer D, Ruttmann E, Poelzl G, Kilo J, Hoermann C, Margreiter R et al. Outcome evaluation of the bridge-tobridge concept in patients with cardiogenic shock. Ann Thorac Surg. 2006 Jul; 82 (1): 28–33. doi: 10.1016/j.athoracsur.2006.02.056. PMID: 16798182.

34. Mohite PN, Zych B, Popov AF, Sabashnikov A, Sáez DG, Patil NP et al. CentriMag short-term ventricular assist as a bridge to solution in patients with advanced heart failure: use beyond 30 days. Eur J Cardiothorac Surg. 2013 Nov; 44 (5): e310–e315. doi: 10.1093/ejcts/ezt415. Epub 2013 Aug 29. PMID: 23990618.

35. Yang JA, Kato TS, Shulman BP, Takayama H, Farr M, Jorde UP et al. Liver dysfunction as a predictor of outcomes in patients with advanced heart failure requiring ventricular assist device support: Use of the Model of End-stage Liver Disease (MELD) and MELD eXcluding INR (MELD-XI) scoring system. J Heart Lung Transplant. 2012 Jun; 31 (6): 601–610. doi: 10.1016/j.healun.2012.02.027. Epub 2012 Mar 28. PMID: 22458997; PMCID: PMC3358456.

36. Riebandt J, Haberl T, Mahr S, Laufer G, Rajek A, Steinlechner B et al. Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS Level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg. 2014 Sep; 46 (3): 486–492; discussion 492. doi: 10.1093/ejcts/ezu093. Epub 2014 Mar 18. PMID: 24648428.

37. Durinka JB, Bogar LJ, Hirose H, Brehm C, Koerner MM, Pae WE et al. End-organ recovery is key to success for extracorporeal membrane oxygenation as a bridge to implantable left ventricular assist device. ASAIO J. 2014 Mar-Apr; 60 (2): 189–192. doi: 10.1097/MAT.0000000000000043. PMID: 24399062.

38. Tsyganenko D, Gromann TW, Schoenrath F, Mueller M, Mulzer J, Starck C et al. Predictors of mid-term outcomes in patients undergoing implantation of a ventricular assist device directly after extracorporeal life support. Eur J Cardiothorac Surg. 2019 Apr 1; 55 (4): 773–779. doi: 10.1093/ejcts/ezy351. PMID: 30445489.

39. Sorensen EN, Griffith BP, Feller ED, Kaczorowski DJ. Outcomes with temporary mechanical circulatory support before minimally invasive centrifugal left ventricular assist device. J Card Surg. 2020 Jul; 35 (7): 1539–1547. doi: 10.1111/jocs.14655. Epub 2020 Jun 24. PMID: 32579786.

40. Das BB, Trivedi J, Deshpande SR, Alsoufi B, Slaughter MS. Recent Era Outcomes of Mechanical Circulatory Support in Children With Congenital Heart Disease as a Bridge to Heart Transplantation. ASAIO J. 2022 Mar 1; 68 (3): 432–439. doi: 10.1097/MAT.0000000000001468. PMID: 35213887.

41. Simpson KE, Kirklin JK, Cantor RS, Mehegan M, Lamour JM, Guleserian KJ et al. Right heart failure with left ventricular assist device implantation in children: An analysis of the Pedimacs registry database. J Heart Lung Transplant. 2020 Mar; 39 (3): 231–240. doi: 10.1016/j.healun.2019.11.012. Epub 2019 Nov 28. PMID: 31926747.

42. Bhama JK, Kormos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant. 2009 Sep; 28 (9): 971–976. doi: 10.1016/j.healun.2009.04.015. PMID: 19716053.

43. Morgan JA, John R, Lee BJ, Oz MC, Naka Y. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004 Mar; 77 (3): 859–863. doi: 10.1016/j.athoracsur.2003.09.048. PMID: 14992887.


Review

For citations:


Poptsov V.N., Karina Ya.S., Ryabtsev D.V., Spirina E.A., Kuznetsova A.A., Kolyadina V.V., Chartaev A.Ch., Epremian A.S., Solodovnikova A.K., Ignatkina A.S. Urgent LVAD implantation in children on peripheral VA-ECMO support. Russian Journal of Transplantology and Artificial Organs. 2025;27(4):74-86. (In Russ.) https://doi.org/10.15825/1995-1191-2025-4-74-86

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)