Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Silk-based scaffolds for tissue engineering and reconstructive surgery: mechanical and structural properties

https://doi.org/10.15825/1995-1191-2025-4-125-132

Abstract

Silk is a promising natural biomaterial that combines mechanical strength, biocompatibility, and controlled biodegradation, making it highly suitable for scaffold creation for clinical practice. This study investigates how different processing methods influence the morphological and mechanical characteristics of silk-based scaffolds. The fi ndings showed that varying the processing conditions facilitates the production of materials with tailored properties, ranging from dense, mechanically robust structures to porous, rapidly degradable scaffolds. Highdensity samples (Fibroplen-Atlas) exhibited substantial mechanical stability, making them promising candidates for surgical applications in mechanically demanding areas such as ligaments, fascia, and tendons. In contrast, more porous scaffolds (Fibroplen-Gas) demonstrated accelerated biodegradation, which is advantageous for soft tissue regeneration. These results highlight the potential of silk scaffolds for personalized applications, where the balance between mechanical stability and biodegradation rate can be adjusted according to specific clinical needs.

About the Authors

E. I. Podbolotova
Shumakov National Medical Research Center of Transplantology and Artificial Organs; Moscow Institute of Physics and Technology
Russian Federation

Moscow; Dolgoprudny



A. R. Pashutin
Shumakov National Medical Research Center of Transplantology and Artificial Organs; Moscow Institute of Physics and Technology
Russian Federation

Moscow; Dolgoprudny



N. V. Grudinin
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



I. I. Agapov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



E. A. Volkova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



O. I. Agapova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. E. Efimov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



References

1. Wang L, Wang C, Wu S, Fan Y, Li X. Influence of mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci. 2020 May 21; 8 (10): 2714– 2733. doi: 10.1039/d0bm00269k.

2. Binyamin G, Shafi BM, Mery CM. Biomaterials: A primer for surgeons. Semin Pediatr Surg. 2006 Nov; 15 (4): 276–283. doi: 10.1053/j.sempedsurg.2006.07.007.

3. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today. 2011; 14 (3): 88–95. doi: 10.1016/S1369-7021(11)70058-X.

4. Efimov AE, Agapova OI, Safonova LA, Bobrova MM, Parfenov VA, Koudan EV et al. 3D scanning probe nanotomography of tissue spheroid fibroblasts interacting with electrospun polyurethane scaffold. Express Polymer Letters. 2019; 13 (7): 632–641. doi: 10.3144/expresspolymlett.2019.53.

5. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008 Dec; 17 (Suppl 4): 467–479. doi: 10.1007/s00586-008-0745-3.

6. Suamte L, Tirkey A, Barman J, Jayasekhar Babu P. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Materials in Manufacturing. 2023; 1: 100011. doi: 10.1016/j.smmf.2022.100011.

7. Podbolotova EI, Agapova OI. Biodegradable silk-based products for regenerative medicine. Russian Journal of Transplantology and Artificial Organs. 2024; 26 (4): 157–165. [In Russ, English abstract]. doi: 10.15825/1995-11912024-4-157-165.

8. Prokudina ES, Senokosova EA, Antonova LV, Krivkina EO, Velikanova EA, Akentieva TN et al. New TissueEngineered Vascular Matrix Based on Regenerated Silk Fibroin: in vitro Study. Sovrem Tekhnologii Med. 2023; 15 (4): 41–48. doi: 10.17691/stm2023.15.4.04. PMID: 38434192.

9. Mantry S, Silakabattini K, Das PK, Sankaraiah J, Barik CS, Panda S et al. Silk fibroin: An innovative protein macromolecule-based hydrogel/scaffold revolutionizing breast cancer treatment and diagnosis – Mechanisms, advancements, and targeting capabilities. Int J Biol Macromol. 2025 Apr 5; 309 (Pt 2): 142870. doi: 10.1016/j.ijbiomac.2025.142870. PMID: 40194579.

10. Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci. 2021 Feb 2; 22 (3): 1499. doi: 10.3390/ijms22031499. PMID: 33540895.

11. De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G et al. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel). 2024 Feb 9; 11 (2): 167. doi: 10.3390/bioengineering11020167. PMID: 38391652.

12. Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to MultiLevel Structures. Int J Mol Sci. 2017 Mar 3; 18 (3): 237. doi: 10.3390/ijms18030237. PMID: 28273799.

13. Tian Z, Chen H, Zhao P. Compliant immune response of silk-based biomaterials broadens application in wound treatment. Front Pharmacol. 2025 Feb 12; 16: 1548837. doi: 10.3389/fphar.2025.1548837.

14. Jacobsen MM, Li D, Rim NG, Backman D, Smith ML, Wong JY. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep. 2017 Apr 5; 7: 45653. doi: 10.1038/srep45653.

15. Safonova L, Bobrova M, Efimov A, Lyundup A, Agapova O, Agapov I. A Comparative Analysis of the Structure and Biological Properties of Films and Microfibrous Scaffolds Based on Silk Fibroin. Pharmaceutics. 2021 Sep 26; 13 (10): 1561. https://doi.org/10.3390/pharmaceutics13101561.

16. Safonova L, Bobrova M, Efimov A, Davydova L, Tenchurin T, Bogush V et al. Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats. Pharmaceutics. 2021 Oct 15; 13 (10): 1704. doi: 10.3390/pharmaceutics13101704.

17. Gavrilova NA, Borzenok SA, Revishchin AV, Tishchenko OE, Ostrovkiy DS, Bobrova MM et al. The effect of biodegradable silk fibroin-based scaffolds containing glial cell line-derived neurotrophic factor (GDNF) on the corneal regeneration process. Int J Biol Macromol. 2021 Aug 31; 185: 264–276. doi: 10.1016/j.ijbiomac.2021.06.040.

18. Cao Y, Wang B. Biodegradation of Silk Biomaterials. Int J Mol Sci. 2009 Mar 31; 10 (4): 1514–1524. doi: 10.3390/ijms10041514.

19. Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY et al. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science. 2015 Jul; 46: 86–110. doi: 10.1016/j.progpolymsci.2015.02.001.

20. Podbolotova EI, Pashutin AR, Efimov AE, Agapova OI, Agapov II. In vitro Degradation Study of Tissue-Based Materials from Natural Silk for Regenerative Medicine. Biomaterials. 2024; 40 (3): 95–99. [In Russ, English abstract]. doi: 10.56304/S0234275824030104.

21. Agapov II, Agapova OI, Efimov AE, Sokolov DYu, Bobrova MM, Safonova LA. Sposob polucheniya biodegradiruemykh skaffoldov na osnove tkaney iz natural’nogo shelka. Patent na izobretenie RU2653428 S1, 08.05.2018.

22. Agapov II, Podbolotova EI, Kirsanova LA, Grudinin NV, Pashutin AR, Agapova OI et al. In vitro and in vivo Biodegradation of Silk Fabric Scaffolds. Dokl Biol Sci. 2025 Feb; 520 (1): 34–37. doi: 10.1134/S0012496624600519.

23. Zheng Z, Ran J, Chen W, Hu Y, Zhu T, Chen X et al. Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair. Acta Biomater. 2017 Mar 15; 51: 317–329. doi: 10.1016/j.actbio.2017.01.041. PMID: 28093363.

24. Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, Ouyang HW. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials. 2008 Sep; 29 (27): 3683–3692. doi: 10.1016/j.biomaterials.2008.05.017.

25. Shang P, Xiang Y, Xing C, Chen S, Yuan F. Procyanidincrosslinked gradient silk fibroin composite nanofiber scaffold with sandwich structure for rotator cuff repair. Biomater Adv. 2025 Apr; 169: 214183. doi: 10.1016/j.bioadv.2025.214183.

26. Fan H, Liu H, Wang Y, Toh SL, Goh JC. Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering. Cell Transplant. 2008; 17 (12): 1389–1401. doi: 10.3727/096368908787648047.


Supplementary files

Review

For citations:


Podbolotova E.I., Pashutin A.R., Grudinin N.V., Agapov I.I., Volkova E.A., Agapova O.I., Efimov A.E. Silk-based scaffolds for tissue engineering and reconstructive surgery: mechanical and structural properties. Russian Journal of Transplantology and Artificial Organs. 2025;27(4):125-132. (In Russ.) https://doi.org/10.15825/1995-1191-2025-4-125-132

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)