Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Long-term mechanical circulatory support: evolution, present milestones, and future directions

https://doi.org/10.15825/1995-1191-2025-2-89-99

Abstract

Objective: to examine the historical evolution, current advancements, and future prospects of long-term mecha nical circulatory support (LT-MCS) devices in the management of end-stage heart failure.

Materials and methods. An analysis was conducted on clinical studies (MOMENTUM 3, INTERMACS, EUROMACS), historical records, and technological progress in the field of LT-MCS. The review covered three generations of devices: pulsatile pumps (first generation), axial-flow pumps (second generation), and centrifugal pumps with magnetic levitation (third generation). Key outcomes evaluated included survival rates, complication rates (thrombosis, infections, right ventricular failure), and developments within national technology.

Results. The HeartMate III third-generation device has a 2-year survival rate of 82% with a pump thrombosis risk of less than 1%. However, complications remain, including driveline infections (10–15%), right ventricular failure (20–40%), and bleeding events (15–20%). Domestic systems (Stream Cardio) are comparable to second-generation devices but lag in terms of miniaturization and clinical trials. Emerging technologies like the Leviticus FiVAD wireless energy transfer system and the Carmat Aeson fully implantable artificial heart are opening up promising new directions for the future of mechanical circulatory support.

Conclusion. Modern LT-MCS systems have emerged as a via- ble alternative to heart transplantation (HT), particularly for patients who are not candidates for HT. Key areas of ongoing development include device miniaturization, wireless energy transfer technologies, and integration of artificial intelligence. The future of LT-MCS will largely depend on overcoming current system limitations, notably the risks of infection and right ventricular failure.

About the Authors

R. Yu. Bangarov
Volzhsky Branch of Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Rizvan Yu. Bangarov

86, Generala Karbysheva str., Volzhsky, 404120



T. A. Khalilulin
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



V. M. Zakharevich
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



Sh. R. Galeev
Volzhsky Branch of Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Volzhsky



G. V. Nabiev
Volzhsky Branch of Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Volzhsky



References

1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020 Mar 3; 141 (9): e139–e596. doi: 10.1161/CIR.0000000000000757.

2. Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J. 2020; 5: 15. doi: 10.21037/amj.2020.03.03.

3. Khush KK, Cherikh WS, Chambers DC, Harhay MO, Hayes D Jr, Hsich E et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report – 2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019 Oct; 38 (10): 1056–1066. doi: 10.1016/j.healun.2019.08.004.

4. Goldstein DJ, Naka Y, Horstmanshof D, Ravichandran AK, Schroder J, Ransom J et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol. 2020 Apr 1; 5 (4): 411–419. doi: 10.1001/jamacardio.2019.5323.

5. Pettit SJ. HeartMate 3: real-world performance matches pivotal trial. Eur Heart J. 2020 Oct 14; 41 (39): 3810– 3812. doi: 10.1093/eurheartj/ehaa642.

6. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtyfourth Adult Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant. 2017 Oct; 36 (10): 1037–1046. doi: 10.1016/j.healun.2017.07.019.

7. Khalilulin TA. Dlitel’naya mekhanicheskaya podderzhka krovoobrashcheniya v lechenii potentsial’nykh retsipientov donorskogo serdtsa s kriticheskoy serdechnoy nedostatochnost’yu (kliniko-eksperimental’noe issledovanie): Dis. … d-ra med. nauk. M., 2019; 212.

8. DeBakey ME. Left ventricular bypass pump for cardiac assistance: clinical experience. Am J Cardiol. 1971 Jan; 27 (1): 3–11. doi: 10.1016/0002-9149(71)90076-2.

9. Frazier OH, Rose EA, Macmanus Q, Burton NA, Lefrak EA, Poirier VL, Dasse KA. Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg. 1992 Jun; 53 (6): 1080–1090. doi: 10.1016/0003-4975(92)90393-i.

10. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001 Nov 15; 345 (20): 1435–1443. doi: 10.1056/NEJMoa012175.

11. Rigatelli G, Santini F, Faggian G. Past and present of cardiocirculatory assist devices: a comprehensive critical review. J Geriatr Cardiol. 2012 Dec; 9 (4): 389–400. doi: 10.3724/SP.J.1263.2012.05281.

12. Itkin GР. Ventricle assist device: past, present, and future nonpulsatile pumps. Russian Journal of Transplantology and Artificial Organs. 2009; 11 (3): 81–87. (In Russ.). https://doi.org/10.15825/1995-1191-2009-3-81-87.

13. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009 Jul 21; 54 (4): 312–321. doi: 10.1016/j.jacc.2009.03.055.

14. Mankad AK, Tang DG, Clark WB, Flattery M, Harton S, Katlaps GJ et al. Persistent anemia after implantation of the total artificial heart. J Card Fail. 2012 Jun; 18 (6): 433–438. doi: 10.1016/j.cardfail.2012.03.003.

15. Itkin GP, Shokhina EG, Shemakin SYu, Poptsov VN, Shumakov DV, Gautier SV. Features of long-term mechanical circulatory support with continuous-flow pump. Russian Journal of Transplantology and Artificial Organs. 2012; 14 (2): 110–115. (In Russ.). https://doi.org/10.15825/1995-1191-2012-2-110-115.

16. Itkin GP, Selishchev SV. Rotornye nasosy dlya iskusstvennogo i vspomogatel’nogo krovoobrashcheniya. Meditsinskaya tekhnika. 2010; 264 (6): 39–45.

17. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007 Aug 30; 357 (9): 885–896. doi: 10.1056/NEJMoa067758.

18. GiridharanGA, Lee TJ,Ising M, Sobieski MA,Koenig SC, Gray LA, Slaughter MS. Miniaturization of mechanical circulatory support systems. Artif Organs. 2012 Aug; 36 (8): 731–739. doi: 10.1111/j.1525-1594.2012.01523.x.

19. Maher TR, Butler KC, Poirier VL, Gernes DB. HeartMate left ventricular assist devices. A multigeneration of implanted blood pumps. Artif Organs. 2001 May; 25 (5): 422–426. doi: 10.1046/j.1525-1594.2001.06756.x.

20. Williams ML, Trivedi JR, McCants KC, Prabhu SD, Birks EJ, Oliver L, Slaughter MS. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg. 2011 May; 91 (5): 1330– 1333; discussion 1333–1334. doi: 10.1016/j.athoracsur.2011.01.062.

21. Mehra MR, Uriel N, Naka Y, Cleveland JC Jr, Yuzefpolskaya M, Salerno CT et al. A Fully Magnetically Levitated Left Ventricular Assist Device – Final Report. N Engl J Med. 2019 Apr 25; 380 (17): 1618–1627. doi: 10.1056/NEJMoa1900486.

22. John R. Current axial-flow devices – the HeartMate II and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg. 2008 Fall; 20 (3): 264–272. doi: 10.1053/j.semtcvs.2008.08.001.

23. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009 Dec 3; 361 (23): 2241–2251. doi: 10.1056/NEJMoa0909938.

24. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010 Apr 27; 55 (17): 1826–1834. doi: 10.1016/j.jacc.2009.12.052.

25. Strueber M, O’Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM. Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol. 2011 Mar 22; 57 (12): 1375–1382. doi: 10.1016/j.jacc.2010.10.040.

26. Netuka I, Kvasnička T, Kvasnička J, Hrachovinová I, Ivák P, Mareček F et al. Evaluation of von Willebrand factor with a fully magnetically levitated centrifugal continuous-flow left ventricular assist device in advanced heart failure. J Heart Lung Transplant. 2016 Jul; 35 (7): 860–867. doi: 10.1016/j.healun.2016.05.019.

27. Mehra MR, Goldstein DJ, Cleveland JC, Cowger JA, Hall S, Salerno CT et al. Five-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA. 2022 Sep 27; 328 (12): 1233– 1242. doi: 10.1001/jama.2022.16197.

28. FDA alerts health care providers to stop new implants of certain ventricular assist device system. [Electronic resource]. Access mode: free. Date of access: 22.04.2025. https://www.fda.gov/news-events/press-announcements/fda-alerts-healthcare-providers-stop-new-implants-certain-ventricularassist-device-system.

29. Gustafsson F, Shaw S, Lavee J, Saeed D, Pya Y, Krabatsch T et al. Six-month outcomes after treatment of advanced heart failure with a full magnetically levitated continuous flow left ventricular assist device: report from the ELEVATE registry. Eur Heart J. 2018 Oct 1; 39 (37): 3454–3460. doi: 10.1093/eurheartj/ehy513.

30. Teuteberg JJ, Slaughter MS, Rogers JG, McGee EC, Pagani FD, Gordon R et al. The HVAD Left Ventricular Assist Device: Risk Factors for Neurological Events and Risk Mitigation Strategies. JACC Heart Fail. 2015 Oct; 3 (10): 818–828. doi: 10.1016/j.jchf.2015.05.011.

31. Tedford RJ, Leacche M, Lorts A, Drakos SG, Pagani FD, Cowger J. Durable Mechanical Circulatory Support: JACC Scientific Statement. J Am Coll Cardiol. 2023 Oct 3; 82 (14): 1464–1481. doi: 10.1016/j.jacc.2023.07.019.

32. Chamogeorgakis T, ToumpoulisI, Bonios MJ, Lanfear D, Williams C, Koliopoulou A, Cowger J. Treatment Strategies and Outcomes of Right Ventricular Failure Post Left Ventricular Assist Device Implantation: An INTERMACS Analysis. ASAIO J. 2024 Apr 1; 70 (4): 264–271. doi: 10.1097/MAT.0000000000002105.

33. Jorde UP, Saeed O, Koehl D, Morris AA, Wood KL, Meyer DM et al. The Society of Thoracic Surgeons Intermacs 2023 Annual Report: Focus on Magnetically Levitated Devices. Ann Thorac Surg. 2024 Jan; 117 (1): 33–44. doi: 10.1016/j.athoracsur.2023.11.004.

34. De By TMMH, Schoenrath F, Veen KM, Mohacsi P, Stein J, Alkhamees KMM et al. The European Registry for Patients with Mechanical Circulatory Support of the European Association for Cardio-Thoracic Surgery: third report. Eur J Cardiothorac Surg. 2022 Jun 15; 62 (1): ezac032. doi: 10.1093/ejcts/ezac032.

35. Narang N, Raikhelkar J, Sayer G, Uriel N. Hemodynamic Pump-Patient Interactions and Left Ventricular Assist Device Imaging. Cardiol Clin. 2018 Nov; 36 (4): 561–569. doi: 10.1016/j.ccl.2018.06.013.

36. Alvarez J, Rao V. HeartMate 3 – a «Step» in the right direction. J Thorac Dis. 2017 May; 9 (5): E457–E460. doi: 10.21037/jtd.2017.04.39.

37. Melendo-Viu M, Dobarro D, Raposeiras Roubin S, Llamas Pernas C, Moliz Cordón C, Vazquez Lamas M et al. Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection. Life (Basel). 2023 Apr 21; 13 (4): 1065. doi: 10.3390/life13041065.

38. Fernandez Valledor A, Rubinstein G, Moeller CM, Lorenzatti D, Rahman S, Lee C et al. Durable left ventricular assist devices as a bridge to transplantation in The Old and The New World. J Heart Lung Transplant. 2024 Jun; 43 (6): 1010–1020. doi: 10.1016/j.healun.2024.01.019.

39. FernandezValledorA,MoellerCM,RubinsteinG,Oren D, Rahman S, Baranowska J et al. Durable left ventricular assist devices as a bridge to transplantation: what to expect along the way? Expert Rev Med Devices. 2024 Sep; 21 (9): 829–840. doi: 10.1080/17434440.2024.2393344.

40. Jakovljevic DG, Yacoub MH, Schueler S, MacGowan GA, Velicki L, Seferovic PM et al. Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure. J Am Coll Cardiol. 2017 Apr 18; 69 (15): 1924–1933.

41. Malone G, Abdelsayed G, Bligh F, Al Qattan F, Syed S, Varatharajullu P et al. Advancements in left ventricular assist devices to prevent pump thrombosis and blood coagulopathy. J Anat. 2023 Jan; 242 (1): 29–49. doi: 10.1111/joa.13675.

42. Meyer DM, Nayak A, Wood KL, Blumer V, Schettle S, Salerno C et al. The Society of Thoracic Surgeons Intermacs 2024 Annual Report: Focus on Outcomes in Younger Patients. Ann Thorac Surg. 2025 Jan; 119 (1): 34–58. doi: 10.1016/j.athoracsur.2024.10.003.

43. Aslam S, Cowger J, Shah P, Stosor V, Copeland H, Reed A et al. The International Society for Heart and Lung Transplantation (ISHLT): 2024 infection definitions for durable and acute mechanical circulatory support devices. J Heart Lung Transplant. 2024 Jul; 43 (7): 1039–1050. doi: 10.1016/j.healun.2024.03.004.

44. Chu VH, Bielick CG, Arnold CJ. Cardiovascular Implantable Electronic Device Infections: A Contemporary Review. Infect Dis Clin North Am. 2024; 38 (2): 693–712.

45. Kormos RL, Antonides CFJ, Goldstein DJ, Cowger JA, Starling RC, Kirklin JK et al. Updated definitions of adverse events for trials and registries of mechanical circulatory support: A consensus statement of the mechanical circulatory support academic research consortium. J Heart Lung Transplant. 2020 Aug; 39 (8): 735–750. doi: 10.1016/j.healun.2020.03.010.

46. Mancini DM, Beniaminovitz A, Levin H, Catanese K, Flannery M, DiTullio M et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998 Dec 1; 98 (22): 2383–2389. doi: 10.1161/01.cir.98.22.2383.

47. Birks EJ, George RS, Firouzi A, Wright G, Bahrami T, Yacoub MH, Khaghani A. Long-term outcomes of patients bridged to recovery versus patients bridged to transplantation. J Thorac Cardiovasc Surg. 2012 Jul; 144 (1): 190–196. doi: 10.1016/j.jtcvs.2012.03.021.

48. Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB et al. Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008 Sep 30; 118 (14 Suppl): S94–S105. doi: 10.1161/CIRCULATIONAHA.107.755983.

49. Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcome. Circulation. 2005 Aug 30; 112 (9 Suppl): I32– I36. doi: 10.1161/CIRCULATIONAHA.104.524124.

50. Wever-Pinzon O, Drakos SG, McKellar SH, Horne BD, Caine WT, Kfoury AG et al. Cardiac Recovery During Long-Term Left Ventricular Assist Device Support. J Am Coll Cardiol. 2016 Oct 4; 68 (14): 1540–1553. doi: 10.1016/j.jacc.2016.07.743.

51. Lodge AJ, Antunez AG, Jaquiss RDB. Pediatric ventricular assist devices. Progress in Pediatric Cardiology. 2012; 33 (2): 169–176.

52. Huber CH, Tozzi P, Hurni M, von Segesser LK. No drive line, no seal, no bearing and no wear: magnetics for impeller suspension and flow assessment in a new VAD. Interact Cardiovasc Thorac Surg. 2004 Jun; 3 (2): 336– 340. doi: 10.1016/j.icvts.2004.01.014.

53. Lucke L, Bluvshtein V. Safety considerations for wireless delivery of continuous power to implanted medical devices. Annu Int Conf IEEE Eng Med Biol Soc. 2014; 2014: 286–289. doi: 10.1109/EMBC.2014.6943585.

54. Adachi I, Jaquiss RD. Mechanical Circulatory Support in Children. Curr Cardiol Rev. 2016; 12 (2): 132–140. doi: 10.2174/1573403X12666151119165841.

55. Greenberg JW, Perry T, Morales DLS. Management of Mechanical Circulatory Support in Pediatric Heart Failure. Management of Acute and Chronic Severe Heart Failure: Advances in Mechanical Circulatory Support. Cham: Springer Nature Switzerland, 2025: 371–385. doi: 10.1007/978-3-031-74963-6_23.

56. Amdani S, Conway J, George K, Martinez HR, AsanteKorang A, Goldberg CS et al. Evaluation and Management of Chronic Heart Failure in Children and Adolescents With Congenital Heart Disease: A Scientific Statement From the American Heart Association. Circulation. 2024 Jul 9; 150 (2): e33–e50. doi: 10.1161/CIR.0000000000001245.

57. Campi T, Cruciani S, Maradei F, Montalto A, Feliziani M. Wireless Power Transmission for Left Ventricular Assist Devices: Advancements, Challenges, and Future Directions. 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE). 2024: 505–508. doi: 10.1109/WPTCE59894.2024.10557316.

58. Moore J, Castellanos S, Xu S, Wood B, Ren H, Tse ZTH. Applications of Wireless Power Transfer in Medicine: State-of-the-Art Reviews. Ann Biomed Eng. 2019 Jan; 47 (1): 22–38. doi: 10.1007/s10439-018-02142-8.

59. Alabsi A, Hawbani A, Wang X, Al-Dubai A, Hu J, Aziz SA et al. Wireless power transfer technologies, applications, and future trends: A review. IEEE Transactions on Sustainable Computing. 2025 Jan-Feb; 10 (1): 1–17. doi: 10.1109/TSUSC.2024.3380607.

60. Khalili HF, Kirchner J, Bartunik M, Werner S, Ebel N, Schubert DW et al. Transcutaneous energy transfer system for cardiac-assist devices by use of inhomogeneous biocompatible core material. IEEE Transactions on Magnetics. 2021; 57 (12): 1–12.

61. Knecht OM. Transcutaneous Energy and Information Transfer for Left Ventricular Assist Devices: Diss. ETH No. 24719. Zurich, 2017; 363.

62. Campi T, Cruciani S, Maradei F, Montalto A, Musumeci F, Feliziani M. Thermal analysis of a transcutaneous energy transfer system for a left ventricular assist device. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2021; 6 (2): 253–259.

63. Jordan A, Tchantchaleishvili V. Recent progress in the field of artificial organs. Artif Organs. 2020 Dec; 44 (12): 1318–1319. doi: 10.1111/aor.13855.

64. Han JJ. Aeson – The Carmat total artificial heart is approved for enrollment in the United States. Artif Organs. 2021 May; 45 (5): 445–446. doi: 10.1111/aor.13959.

65. Recent progress in the field of Artificial Organs. Artif Organs. 2023; 47 (12): 1805–1806. doi: 10.1111/aor.14663.

66. Peronino C. Caractérisation de l’hémocompatibilité acquise du coeur artificiel total Aeson (Carmat, A-TAH): Thèse de doctorat. Discipline: Hématologie. Université Paris Cité, 2023; 227.

67. CARMAT franchit le cap des 100 implantations de son cœur artificiel total Aeson® / CARMAT – 10 février 2025. https://www.carmatsa.com/communique-depresse/carmat-franchit-le-cap-des-100-implantationsde-son-coeur-artificiel-total-aeson/ (Date of access: 23.04.2025).

68. Itkin GP. Development of experimental and clinical approbation methodology of implantable axial pumps. Transplantology: results and prospects. Vol. VI. 2014 / Ed. by S.V. Gautier. M.–Tver: Triada, 2015: 138–143.

69. Shumakov DV, Shemakyn SYu, Kozlov IL, Popzov VN, Kormer AYa, Romanov OV et al. The fist experience of clinic application the implanting pump INCOR for the round about way of left ventricular in Russia. Russian Journal of Transplantology and Artificial Organs. 2007; 10 (1): 19–27.

70. Gautier SV, Kuleshov AP, Efimov AE, Agapov II, Itkin GP. Optimization of Implantable Axial Pump to Increase Efficiency of Mechanical Circulatory Support. Russian Journal of Transplantology and Artificial Organs. 2017; 19 (2): 61–68. (In Russ.). https://doi.org/10.15825/1995-1191-2017-2-61-68.

71. Itkin GP, Dmitrieva OYu, Buchnev AS, Drobyshev AA, Kuleshov AP, Volkova AV, Halilulin TA. Results of experimental studies of the children’s axial pump «DON-3». Russian Journal of Transplantology and Artificial Organs. 2018; 20 (2): 61–68. https://doi.org/10.15825/1995-1191-2018-2-61-68.

72. Dmitrieva OYu, Buchnev AS, Kuleshov AP, Drobyshev AA, Volkova EA, Itkin GP. First experience of using a children’s axial pump in an experiment. Russian Journal of Transplantology and Artificial Organs. 2017; 19 (S): 172.

73. Gautier SV, Itkin GP, Shemakin SYu, Saitgareev RSh, Poptsov VN, Zakharevich VM et al. The first experience in clinical application of domestic circulatory support device on basis of implantable axial pump for two stage heart transplantation. Russian Journal of Transplantology andArtificial Organs. 2013; 15 (3): 92–101. (In Russ.). https://doi.org/10.15825/1995-1191-2013-3-92-101.

74. Gautier SV, Itkin GP, Shevchenko AO, Khalilulin TA, Kozlov VA. Durable mechanical circulation support as an alternative to heart transplantation. Russian Journal of Transplantology and Artificial Organs. 2016; 18 (3): 128–136. (In Russ.). https://doi.org/10.15825/1995-1191-2016-3-128-136.

75. Khalilulin TA, Zacharevich VM, Poptsov VN, Itkin GP, Shevchenko AO, Saitgareev RSh et al. Special aspects of implantation of a heart pump support system AVK-N as a «bridge» to heart transplantation. Russian Journal of Transplantology and Artificial Organs. 2018; 20 (1): 13–22. https://doi.org/10.15825/1995-1191-2018-1-13-22.

76. Itkin GP. Mechanical circulatory support: problems, solutions and new directions. Russian Journal of Transplantology and Artificial Organs. 2014; 16 (3): 76–84. (In Russ.). https://doi.org/10.15825/1995-1191-2014-3-76-84.

77. Hubutiya MSh, Kasakov EN, Kormer AYa. Complications after heart transplantation. Russian Journal of Transplantology and Artificial Organs. 2005; 7 (3): 9–10.

78. Shumakov VI. Current status and advances in the field of transplantology and artificial organs in Russia. Russian Journal of Transplantology and Artificial Organs. 2006; 8 (4): 6–10.

79. Tolpekin VE, Kilasev NB, Ignatova NV. Current issues of artificial heart and ventricular bypass using blood pumps of membrane type. Transplantologiya. The Russian Journal of Transplantation. 2012; (1–2): 43–47. (In Russ.). https://doi.org/10.23873/2074-0506-2012-0-1-2-43-47.

80. Chernyavskiy AM, Doronin DV, Fomichev AV, Karaskov AM. The initial experience of implantation of the left ventricular assist device «Sputnik» at a cardiac surgery center. Circulation pathology and cardiac surgery. 2019; 23 (1): 26–32.

81. Nevzorov AM, Khaustov AI, Itkin GP. Experience of using domestic pumps for auxiliary blood circulation. Russian Journal of Transplantology and Artificial Organs. 2022; 24 (S): 150.

82. Khubutia MS, Shemakin SY, Filatov IA, Nevzorov AM. Universal complex for mechanical support of the pumping function of the left and right ventricles of the heart – «STREAM CARDIO». Russian Journal of Transplantology and Artificial Organs. 2019; 21 (S): 135–135.

83. BIOSOFT-M. STREAM CARDIO. [Electronic resource]. Date of access: 23.04.2025. https://biosoft-m.ru/produkty/strimkardio/.


Review

For citations:


Bangarov R.Yu., Khalilulin T.A., Zakharevich V.M., Galeev Sh.R., Nabiev G.V. Long-term mechanical circulatory support: evolution, present milestones, and future directions. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):89-99. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-89-99

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)