Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Биомиметики внеклеточного матрикса для тканевой инженерии поджелудочной железы

https://doi.org/10.15825/1995-1191-2025-3-146-159

Аннотация

Трансплантация изолированных островков Лангерганса применяется как более безопасная и менее инвазивная процедура, альтернативная пересадке поджелудочной железы для пациентов с осложненным течением сахарного диабета I типа. Однако потеря васкуляризации, иннервации, связи с внеклеточным матриксом (ВКМ), а также развивающаяся гипоксия, окислительный стресс, воспалительные реакции, токсическое действие иммуносупрессоров значительно снижают жизнеспособность островков и ограничивают функцию трансплантата. Подходы тканевой инженерии и регенеративной медицины направлены на преодоление этих проблем. Разработка способов получения биосовместимых скаффолдов-биомиметиков ВКМ (каркасов, носителей, матриксов), способных обеспечить механическую поддержку и адекватное микроокружение островковым клеткам in vitro и in vivo, – одна из ключевых задач тканевой инженерии. Цель обзора – систематизация данных о применении биомиметиков ВКМ для создания устойчиво функционирующей тканеинженерной конструкции поджелудочной железы.

Об авторах

А. С. Пономарева
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Пономарева Анна Сергеевна.

123182, Москва, ул. Щукинская, д. 1

Тел.: (499) 196-26-61; (926) 585-23-73



Н. В. Баранова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Баранова Наталья Владимировна.

Москва



Ю. Б. Басок
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Басок Юлия Борисовна.

Москва



В. И. Севастьянов
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; АНО «Институт медико-биологических исследований и технологий»
Россия

Севастьянов Виктор Иванович.

Москва



Список литературы

1. Дедов ИИ, Шестакова МВ, Майоров АЮ, Шамхалова МШ, Никонова ТВ, Сухарева ОЮ и др. Сахарный диабет 1-го типа у взрослых. Сахарный диабет. 2020; 23 (1S): 42–114. doi: 10.14341/DM12505.

2. Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020; 8 (3): 226–238. doi: 10.1016/S2213-8587(19)30412-7.

3. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000; 343 (4): 230–238. doi: 10.1056/NEJM200007273430401.

4. Piemonti L. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E et al editors. Islet Transplantation. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. 2022; 2000. PMID: 25905200.

5. Gruessner AC, Gruessner RWG. The 2022 International Pancreas Transplant Registry Report – A Review. Transplant Proc. 2022; 54 (7): 1918–1943. doi: 10.1016/j.transproceed.2022.03.059.

6. Lablanche S, Borot S, Wojtusciszyn A, Skaare K, Penfornis A, Malvezzi P et al. Ten-year outcomes of islet transplantation in patients with type 1 diabetes: Data from the Swiss-French GRAGIL network. Am J Transplant. 2021; 21 (11): 3725–3733. doi: 10.1111/ajt.16637.

7. Hering BJ, Ballou CM, Bellin MD, Payne EH, Kandeel F, Witkowski P et al. Factors associated with favourable 5 year outcomes in islet transplant alone recipients with type 1 diabetes complicated by severe hypoglycaemia in the Collaborative Islet Transplant Registry. Diabetologia. 2023; 66: 163–173. doi: 10.1007/s00125-022-05804-4.

8. Reid L, Baxter F, Forbes S. Effects of islet transplantation on microvascular and macrovascular complications in type 1 diabetes. Diabet Med. 2021; 38 (7): e14570. doi: 10.1111/dme.14570.

9. Langlois A, Pinget M, Kessler L, Bouzakri K. Islet Transplantation: Current Limitations and Challenges for Successful Outcomes. Cells. 2024; 13 (21): 1783. doi: 10.3390/cells13211783.

10. Olaniru OE, Persaud SJ. Identifying novel therapeutic targets for diabetes through improved understanding of islet adhesion receptors. Curr Opin Pharmacol. 2018; 43: 27–33. doi: 10.1016/j.coph.2018.07.009.

11. Kahraman S, Okawa ER, Kulkarni RN. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes? Curr Diab Rep. 2016; 16 (8): 70. doi: 10.1007/s11892-016-0764-0.

12. Abadpour S, Wang C, Niemi EM, Scholz H. Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. Curr Transpl Rep. 2021; 8: 205–219. doi: 10.1007/s40472-021-00333-2.

13. Sevastianov VI, Basok YuB et al. Biomimetics of Extracellular Matrices for Cell and Tissue Engineered Medical Products. Eds. Victor I. Sevastianov and Yulia B. Basok. Newcastle upon Tyne, UK: Cambridge Scholars Publishing; 2023: 339.

14. Zhang Q, Gonelle-Gispert C, Li Y, Geng Z, Gerber-Lemaire S, Wang Y et al. Islet Encapsulation: New Developments for the Treatment of Type 1 Diabetes. Front Immunol. 2022; 13: 869984. doi: 10.3389/fimmu.2022.869984.

15. Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng. 2019; 10: 2041731419884708. doi: 10.1177/2041731419884708.

16. Ho BX, Teo AKK, Ng NHJ. Innovations in bio-engineering and cell-based approaches to address immunological challenges in islet transplantation. Front Immunol. 2024; 15: 1375177. doi: 10.3389/fimmu.2024.1375177.

17. Басок ЮБ, Пономарева АС, Грудинин НВ, Круглов ДН, Богданов ВК, Белова АД, Севастьянов ВИ. Применение мезенхимальных стромальных клеток при трансплантации солидных органов: вызовы и перспективы (систематический обзор). Вестник трансплантологии и искусственных органов. 2025; 27 (1): 114–134.

18. Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev. 2014; 20 (5): 455–467. doi: 10.1089/ten.TEB.2013.0462.

19. Santos da Silva T, Silva-Júnior LND, Horvath-Pereira BO, Valbão MCM, Garcia MHH, Lopes JB et al. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel). 2024; 9 (10): 598. doi: 10.3390/biomimetics9100598.

20. Sojoodi M, Farrokhi A, Moradmand A, Baharvand H. Enhanced maintenance of rat islets of Langerhans on laminin-coated electrospun nanofibrillar matrix in vitro. Cell Biol Int. 2013; 37 (4): 370–379. doi: 10.1002/cbin.10045.

21. Sigmundsson K, Ojala JRM, Öhman MK, Österholm AM, Moreno-Moral A, Domogatskaya A et al. Culturing functional pancreatic islets on α5-laminins and curative transplantation to diabetic mice. Matrix Biol. 2018; 70: 5–19. doi: 10.1016/j.matbio.2018.03.018.

22. Fernández-Montes RD, Blasi J, Busquets J, Montanya E, Nacher M. Fibronectin enhances soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein expression in cultured human islets. Pancreas. 2011; 40 (7): 1153–1155. doi: 10.1097/MPA.0b013e318222bcaf.

23. Llacua LA, Hoek A, de Haan BJ, de Vos P. Collagen type VI interaction improves human islet survival in immunoisolating microcapsules for treatment of diabetes. Islets. 2018; 10 (2): 60–68. doi: 10.1080/19382014.2017.1420449.

24. Сургученко ВА, Пономарева АС, Ефимов АЕ, Немец ЕА, Агапов ИИ, Севастьянов ВИ. Особенности адгезии и пролиферации фибробластов мыши линии nih/3т3 на пленках из бактериального сополимера поли(3-гидроксибутират-со-3-гидроксивалерата) с различной шероховатостью поверхности. Вестник трансплантологии и искусственных органов. 2012; 14 (1): 72–77. doi: 10.15825/1995-1191-2012-1-72-77.

25. Mehdi Ebrahimi. Porosity parameters in biomaterial science: Definition, impact, and challenges in tissue engineering. Front Mater Sci. 2021; 15 (3): 352‒373. doi: 10.1007/s11706-021-0558-4.

26. Севастьянов ВИ, Кирпичников МП. Биосовместимые материалы. М.: МИА, 2011; 544.

27. Johnson AS, O’Sullivan E, D’Aoust LN, Omer A, Bonner-Weir S, Fisher RJ et al. Quantitative assessment of islets of Langerhans encapsulated in alginate. Tissue Eng Part C Methods. 2011; 17 (4): 435–449. doi: 10.1089/ten.TEC.2009.0510.

28. Formo K, Cho CH, Vallier L, Strand BL. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds. J Biomed Mater Res A. 2015; 103 (12): 3717–3726. doi: 0.1002/jbm.a.35507.

29. Köllmer M, Appel AA, Somo SI, Brey EM. Long-term function of alginate-encapsulated islets. Tissue Eng Part B Rev. 2015; 22: 34–46. doi: 10.1089/ten.TEB.2015.0140.

30. Li N, Sun G, Wang S, Wang Y, Xiu Z, Sun D et al. Engineering islet for improved performance by optimized reaggregation in alginate gel beads. Biotechnol Appl Biochem. 2017; 64 (3): 400–405. doi: 10.1002/bab.1489.

31. Noverraz F, Montanari E, Pimenta J, Szabó L, Ortiz D, Gonelle-Gispert C et al. Antifibrotic effect of ketoprofen-grafted alginate microcapsules in the transplantation of insulin producing cells. Bioconjug Chem. 2018; 29 (6): 1932–1941. doi: 10.1021/acs.bioconjchem.8b00190.

32. Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Fernandez L, Ochoa I, Saenz Del Burgo L et al. Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus. Int J Biol Macromol. 2018; 107 (Pt A): 1261–1269. doi: 10.1016/j.ijbiomac.2017.09.103.

33. Kawazoe N, Lin XT, Tateishi T, Chen G. Three-dimensional cultures of rat pancreatic RIN-5F cells in porous PLGA-collagen hybrid scaffolds. J Bioact Compat Pol. 2009; 24: 25–42. doi: 10.1177/0883911508099439.

34. Jalili RB, Moeen Rezakhanlou A, Hosseini-Tabatabaei A, Ao Z, Warnock GL, Ghahary A. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal. J Cell Physiol. 2011; 226 (7): 1813–1819. doi: 10.1002/jcp.22515.

35. Deng C, Vulesevic B, Ellis C, Korbutt GS, Suuronen EJ. Vascularization of collagen-chitosan scaffolds with circulating progenitor cells as potential site for islet transplantation. J Control Release. 2011; 152 (Suppl 1): e196–e198. doi: 10.1016/j.jconrel.2011.09.005.

36. Yap WT, Salvay DM, Silliman MA, Zhang X, Bannon ZG, Kaufman DB et al. Collagen IV-modified scaffolds improve islet survival and function and reduce time to euglycemia. Tissue Eng Part A. 2013; 19 (21–22): 2361–2372. doi: 10.1089/ten.TEA.2013.0033.

37. Riopel M, Wang К. Collagen matrix support of pancreatic islet survival and function. Front Biosci (Landmark Ed). 2014; 19 (1): 77–90. doi: 10.2741/4196.

38. McEwan K, Padavan DT, Ellis C, McBane JE, Vulesevic B, Korbutt GS et al. Collagen-chitosan-laminin hydrogels for the delivery of insulin-producing tissue. J Tissue Eng Regen Med. 2016; 10 (10): E397–E408. doi: 10.1002/term.1829.

39. Szebeni GJ, Tancos Z, Feher LZ, Alfoldi R, Kobolak J, Dinnyes A et al. Real architecture for 3D Tissue (RAFT) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells. Cytotechnology. 2017; 69 (2): 359–369. doi: 10.1007/s10616-017-0067-6.

40. Vlahos AE, Cober N, Sefton MV. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci USA. 2017; 114 (35): 9337–9342. doi: 10.1073/pnas.1619216114.

41. Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K et al. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018; 91: 236–246. doi: 10.1016/j.msec.2018.04.101.

42. Баранова НВ, Кирсанова ЛА, Пономарева АС, Немец ЕА, Басок ЮБ, Бубенцова ГН и др. Сравнительный анализ секреторной способности островков Лангерганса, культивированных с биополимерным коллагенсодержащим гидрогелем и тканеспецифическим матриксом. Вестник трансплантологии и искусственных органов. 2019; 21 (4): 45–53. doi: 10.15825/1995-1191-2019-4-45-53.

43. Yang KC, Wu CC, Lin FH, Qi Z, Kuo TF, Cheng YH et al. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation. 2008; 15 (6): 407–416. doi: 10.1111/j.1399-3089.2008.00503.x.

44. Kuehn C, Fülöp T, Lakey JR, Vermette P. Young porcine endocrine pancreatic islets cultured in fibrin and alginate gels show improved resistance towards human monocytes. Pathol Biol. 2014; 62 (6): 354–364. doi: 10.1016/j.patbio.2014.07.010.

45. Bhang SH, Jung MJ, Shin JY, La WG, Hwang YH, Kim MJ et al. Mutual effect of subcutaneously trans-planted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials. 2013; 34 (30): 7247–7256. doi: 10.1016/j.biomaterials.2013.06.018.

46. Kuehn C, Lakey JR, Lamb MW, Vermette P. Young porcine endocrine pancreatic islets cultured in fibrin show improved resistance toward hydrogen peroxide. Islets. 2013; 5 (5): 207–215. doi: 10.4161/isl.26989.

47. Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N et al. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int. 2014; 38 (10): 1174–1182. doi: 10.1002/cbin.10314.

48. Seyedi F, Farsinejad A, Nematollahi-Mahani SN. Fibrin scaffold enhances function of insulin producing cells differentiated from human umbilical cord matrix-derived stem cells. Tissue Cell. 2017; 49 (2 Pt B): 227–232. doi: 10.1016/j.tice.2017.03.001.

49. Muthyala S, Bhonde RR, Nair PD. Cytocompatibility studies of mouse pancreatic islets on gelatin – PVP semi IPN scaffolds in vitro: potential implication towards pancreatic tissue engineering. Islets. 2010; 2 (6): 357–366. doi: 10.4161/isl.2.6.13765.

50. Kuo YC, Liu YC, Rajesh R. Pancreatic differentiation of induced pluripotent stem cells in activin A-grafted gelatin-poly(lactide-co-glycolide) nanoparticle scaffolds with induction of LY294002 and retinoic acid. Mater Sci Eng C Mater Biol Appl. 2017; 77: 384–393. doi: 10.1016/j.msec.2017.03.265.

51. Davis NE, Beenken-Rothkopf LN, Mirsoian A, Kojic N, Kaplan DL, Barron AE et al. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials. 2012; 33 (28): 6691–6697. doi: 10.1016/j.biomaterials.2012.06.015.

52. Shalaly ND, Ria M, Johansson U, Åvall K, Berggren PO, Hedhammar M. Silk matrices promote formation of insulin-secreting islet-like clusters. Biomaterials. 2016; 90: 50–61. doi: 10.1016/j.biomaterials.2016.03.006.

53. Kumar M, Nandi SK, Kaplan DL, Mandal BB. Localized immunomodulatory silk macrocapsules for islet-like spheroid formation and sustained insulin production. ACS Biomater Sci Eng. 2017; 3: 2443–2456. doi: 10.1021/acsbiomaterials.7b00218.

54. Xu T, Zhu M, Guo Y, Wu D, Huang Y, Fan X et al. Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application. J Biomater Appl. 2015; 30 (4): 379–387. doi: 10.1177/0885328215587610.

55. Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3D culture of MIN-6 cells on decellularized pancreatic scaffold: in vitro and in vivo study. Biomed Res Int. 2015: 432645. doi: 10.1155/2015/432645.

56. Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A et al. Lung-derived microscaffolds facilitate diabetes reversal after mouse and human intraperitoneal islet transplantation. PLoS ONE. 2016; 11 (5): e0156053. doi: 10.1371/journal.pone.0156053.

57. Katsuki Y, Yagi H, Okitsu T, Kitago M, Tajima K, Kadota Y et al. Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds. Pancreatology. 2016; 16 (5): 922–930. doi: 10.1016/j.pan.2016.06.007.

58. Zhou P, Guo Y, Huang Y, Zhu M, Fan X, Wang L et al. The dynamic three-dimensional culture of islet-like clusters in decellularized liver scaffolds. Cell Tissue Res. 2016; 365 (1): 157–171. doi: 10.1007/s00441-015-2356-8.

59. Wang X, Wang K, Zhang W, Qiang M, Luo Y. A bilaminated decellularized scaffold for islet transplantation: structure, properties and functions in diabetic mice. Biomaterials. 2017; 138: 80–90. doi: 10.1016/j.biomaterials.2017.05.033.

60. Wan J, Huang Y, Zhou P, Guo Y, Wu C, Zhu S et al. Culture of iPSCs derived pancreatic beta-like cells in vitro using decellularized pancreatic scaffolds: a preliminary trial. Biomed Res Int. 2017; 2017: 4276928. doi: 10.1155/2017/4276928.

61. Napierala H, Hillebrandt KH, Haep, N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci Rep. 2017; 7: 41777. doi: 10.1038/srep41777.

62. Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep. 2018; 8 (1): 10452. doi: 10.1038/s41598-018-28857-1.

63. Berkova Z, Zacharovova K, Patikova A, Leontovyc I, Hladikova Z, Cerveny D et al. Decellularized pancreatic tail as matrix for pancreatic islet transplantation into the greater omentum in rats. J Funct Biomater. 2022; 13 (4): 171. doi: 10.3390/jfb13040171.

64. Klak M, Łojszczyk I, Berman A, Tymicki G, Adamiok-Ostrowska A, Sierakowski M et al. Impact of porcine pancreas decellularization conditions on the quality of obtained dECM. Int J Mol Sci. 2021; 22 (13): 7005. doi: 10.3390/ijms22137005.

65. Kizilel S, Scavone A, Liu X, Nothias JM, Ostrega D, Witkowski P et al. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng Part A. 2010; 16 (7): 2217–2228. doi: 10.1089/ten.TEA.2009.0640.

66. Mason MN, Mahoney MJ. A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons. J Biomed Mater Res A. 2010; 95 (1): 283–293. doi: 10.1002/jbm.a.32825.

67. Lin CC, Anseth KS. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc Natl Acad Sci USA. 2011; 108 (16): 6380–6385. doi: 10.1073/pnas.1014026108.

68. Hall KK, Gattas-Asfura KM, Stabler CL. Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomater. 2011; 7 (2): 614–624. doi: 10.1016/j.actbio.2010.07.016.

69. Hume PS, Anseth KS. Polymerizable superoxide dismutase mimetic protects cells encapsulated in poly(ethylene glycol) hydrogels from reactive oxygen species-mediated damage. J Biomed Mater Res A. 2011; 99 (1): 29–37. doi: 10.1002/jbm.a.33160.

70. Raza A, Lin CC. The influence of matrix degrada tion and functionality on cell survival and morphogenesis in PEG-based hydrogels. Macromol Biosci. 2013; 13 (8): 1048–1058. doi: 10.1002/mabi.201300044.

71. Marchioli G, Luca AD, de Koning E, Engelse M, Van Blitterswijk CA, Karperien M et al. Hybrid polycaprolactone/alginate scaffolds functionalized with VEGF to promote de novo vessel formation for the transplantation of islets of Langerhans. Adv Healthc Mater. 2016; 5 (13): 1606–1616. doi: 10.1002/adhm.201600058.

72. Bal T, Nazli C, Okcu A, Duruksu G, Karaöz E, Kizilel S. Mesenchymal stem cells and ligand incorporation in biomimetic poly(ethylene glycol) hydrogels significantly improve insulin secretion from pancreatic islets. J Tissue Eng Regen Med. 2017; 11 (3): 694–703. doi: 10.1002/term.1965.

73. Knobeloch T, Abadi SEM, Bruns J, Petrova Zustiak S, Kwon G. Injectable polyethylene glycol hydrogel for islet encapsulation: an in vitro and in vivo Characterization. Biomed Phys Eng Express. 2017; 3: 035022. doi: 10.1088/2057-1976/aa742b.

74. Smink AM, Li S, Hertsig DT, de Haan BJ, Schwab L, van Apeldoorn AA et al. The efficacy of a prevascularized, retrievable poly(D,L,-lactide-co-ε-caprolactone) subcutaneous scaffold as transplantation site for pancreatic islets. Transplantation. 2017; 101 (4): e112–e119. doi: 10.1097/TP.0000000000001663.

75. Marchioli G, Zellner L, Oliveira C, Engelse M, Koning E, Mano J et al. Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. J Mater Sci Mater Med. 2017; 28 (12): 195. doi: 10.1007/s10856-017-6004-6.

76. Abazari MF, Soleimanifar F, Nouri Aleagha M, Torabinejad S, Nasiri N, Khamisipour G et al. PCL/PVA nano-fibrous scaffold improve insulin-producing cells generation from human induced pluripotent stem cells. Gene. 2018; 671: 50–57. doi: 10.1016/j.gene.2018.05.115.

77. Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song YM et al. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant Proc. 2008; 40 (5): 1658 doi: 10.1016/j.transproceed.2008.02.088.

78. Mao GH, Chen GA, Bai HY, Song TR, Wang YX. The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials. 2009; 30 (9): 1706–1714. doi: 10.1016/j.biomaterials.2008.12.030.

79. Li Y, Fan P, Ding XM, Tian XH, Feng XS, Yan H et al. Polyglycolic acid fibrous scaffold improving endothelial cell coating and vascularization of islet. Chin Med J. 2017; 130 (7): 832–839. doi: 10.4103/0366-6999.202730.

80. Kheradmand T, Wang S, Gibly RF, Zhang X, Holland S, Tasch J et al. Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials. 2011; 32 (20): 4517–4524. doi: 10.1016/j.biomaterials.2011.03.009.

81. Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpré CE, Diraddo RW, Rosenberg L et al. Long-term in vitro human pancreatic islet culture using three dimensional microfabricated scaffolds. Biomaterials. 2011; 32 (6): 1536–1542. doi: 10.1016/j.biomaterials.2010.10.036.

82. Liu L, Tan J, Li B, Xie Q, Sun J, Pu H et al. Construction of functional pancreatic artificial islet tissue composed of fibroblast-modified polylactic-co-glycolic acid membrane and pancreatic stem cells. J Biomater Appl. 2017; 32 (3): 362–372. doi: 10.1177/0885328217722041.

83. Севастьянов ВИ. Клеточно-инженерные конструкции в тканевой инженерии и регенеративной медицине. Вестник трансплантологии и искусственных органов. 2015; 17 (2): 127–130.

84. Buitinga M, Assen F, Hanegraaf M, Wieringa P, Hilderink J, Moroni L et al. Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials. 2017; 135: 10–22. doi: 10.1016/j.biomaterials.2017.03.031.

85. Kumar A. Supermacroporous Cryogels: Biomedical and Biotechnological Applications. 1st Edition. USA: CRC Press. 2016; 480. doi: 10.1201/b19676.

86. Lozinsky VI. A breif history of polymeric cryogels. Adv Polym Sci. 2014; 263: 1–48. doi: 10.1007/978-3-319-05846-7_1.

87. Lozinsky VI, Kulakova VK, Grigoriev AM, Podorozhko EA, Kirsanova LA, Kirillova AD et al. Cryostructuring of Polymeric Systems: 63. Synthesis of Two Chemically Tanned Gelatin-Based Cryostructurates and Evaluation of Their Potential as Scaffolds for Culturing of Mammalian Cells. Gels. 2022; 8 (11): 695. doi: 10.3390/gels8110695.

88. Bloch K, Lozinsky VI, Galaev IY, Yavriyanz K, Vorobeychik M, Azarov D et al. Functional activity of insulinoma cells (INS-1E) and pancreatic islets cultured in agarose cryogel sponges. J Biomed Mater Res A. 2005; 75: 802–809. doi: 10.1002/jbm.a.30466.

89. Lozinsky VI, Damshkaln LG, Bloch RO, Vardi P, Grinberg NV, Burova TV et al. Cryostructuring of polymer systems. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producing cell aggregates. J Appl Polym Sci. 2008; 108: 3046–3062. doi: 10.1002/app.27908.

90. Minardi S, Guo M, Zhang X, Luo X. An elastin-based vasculogenic scaffold promotes marginal islet mass engraftment and function at an extrahepatic site. J Immunol Regen Med. 2019; 3: 1–12. doi: 10.1016/j.regen.2018.12.001.

91. Севастьянов ВИ, Григорьев АМ, Басок ЮБ, Кирсанова ЛА, Василец ВН, Малкова АП и др. Биосовместимые и матриксные свойства полилактидных губок. Вестник трансплантологии и искусственных органов. 2018; 20 (2): 82–90. doi: 10.15825/1995-1191-2018-2-82-90.

92. Pinkse GG, Bouwman WP, Jiawan-Lalai R, Terpstra OT, Bruijn JA, de Heer E. Integrin signaling via RGD peptides and anti-beta1 antibodies confers resistance to apoptosis in islets of Langerhans. Diabetes. 2006; 55 (2): 312–317. doi: 10.2337/diabetes.55.02.06.db04-0195.

93. Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A Comparison of the Capacity of Mesenchymal Stromal Cells for Cartilage Regeneration Depending on Collagen-Based Injectable Biomimetic Scaffold Type. Life (Basel). 2021; 11 (8): 756. doi: 10.3390/life11080756.

94. Hamamoto Y, Fujimoto S, Inada A, Takehiro M, Nabe K, Shimono D et al. Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation. Horm Metab Res. 2003; 35 (8): 460–465. doi: 10.1055/s-2003-41802.

95. Yeo GC, Mithieux SM, Weiss AS. The elastin matrix in tissue engineering and regeneration. Current Opinion in Biomedical Engineering. 2018; 6: 27–32. doi: 10.1016/j.cobme.2018.02.007.

96. Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci. 2020; 21: 5447. doi: 10.3390/ijms21155447.

97. Rabbani M, Zakian N, Alimoradi N. Contribution of Physical Methods in Decellularization of Animal Tissues. Journal of Medical Signals & Sensors. 2021; 11 (1): 1. doi: 10.4103/jmss.JMSS_2_20.

98. Пономарева АС, Баранова НВ, Кирсанова ЛА, Бубенцова ГН, Немец ЕА, Милосердов ИА, Севастьянов ВИ. Определение оптимального режима децеллюляризации поджелудочной железы с учетом морфологических особенностей панкреатической ткани. Вестник трансплантологии и искусственных органов. 2022; 24 (1): 64–71. doi: 10.15825/1995-1191-2022-1-64-71.

99. Sevastianov VI, Ponomareva AS, Baranova NV, Kirsanova LA, Basok YuB, Nemets EA et al. Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci. 2023; 24: 119. doi: 10.3390/ijms24010119.28.

100. Sevastianov VI, Ponomareva AS, Baranova NV, Belova AD, Kirsanova LA, Nikolskaya AO et al. ATissue-Engineered Construct Based on a Decellularized Scaffold and the Islets of Langerhans: A Streptozotocin-Induced Diabetic Model. Life (Basel). 2024; 14 (11): 1505. doi: 10.3390/life14111505.

101. Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas MEA et al. The human pancreas as a source of pro-tolerogenic extracellular matrix scaffold for a new generation bio-artificial endocrine pancreas. Ann Surg. 2016; 264 (1): 169–179. doi: 10.1097/SLA.0000000000001364.

102. Пономарева АС, Кирсанова ЛА, Баранова НВ, Сургученко ВА, Бубенцова ГН, Басок ЮБ и др. Децеллюляризация фрагмента донорской поджелудочной железы для получения тканеспецифического матрикса. Вестник трансплантологии и искусственных органов. 2020; 22 (1): 123–133. doi: 10.15825/1995-1191-2020-1-123-133.

103. Elebring E, Kuna VK, Kvarnstrom N, Sumitran-Holgersson S. Cold-perfusion decellularization of whole-organ porcine pancreas supports human fetal pancreatic cell attachment and expression of endocrine and exocrine markers. J Tissue Eng. 2017; 8: 2041731417738145. doi: 10.1177/2041731417738145.

104. Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater. 2023; 18 (2). doi: 10.1088/1748-605X/acb7bf.

105. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011; 17 (8): 424–432. doi: 10.1016/j.molmed.2011.03.005.

106. Damodaran GR, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018; 12 (5): 1230–1237. doi: 10.1002/term.2655.

107. Khorsandi L, Orazizadeh M, Bijan Nejad D, Heidari Moghadam A, Nejaddehbashi F, Asadi Fard Y. Spleen extracellular matrix provides a supportive microenvironment for β-cell function. Iran J Basic Med Sci. 2022; 25 (9): 1159–1165. doi: 10.22038/IJBMS.2022.65233.14360.

108. Goldman O, Puchinsky D, Durlacher K, Sancho R, Ludwig B, Kugelmeier P et al. Lung Based Engineered Micro-Pancreas Sustains Human Beta Cell Survival and Functionality. Horm Metab Res. 2019; 51 (12): 805–811. doi: 10.1055/a-1041-3305.

109. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 2017; 49: 1–15. doi: 10.1016/j.actbio.2016.11.068.

110. Lozinsky VI. Cryostructuring of Polymeric Systems. 50.† Cryogels and Cryotropic Gel-Formation: Terms and Definitions. Gels. 2018; 4: 77. doi: 10.3390/gels4030077.

111. Kim JY, Sen T, Lee JY, Cho D-W. Degradation-controlled tissue extracellular sponge for rapid hemostasis and wound repair after kidney injury. Biomaterials. 2024; 307: 122524. doi: 10.1016/j.biomaterials.2024.122524.

112. Borg DJ, Welzel PB, Grimmer M, Friedrichs J, Weigelt M, Wilhelm C et al. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells. Acta Biomater. 2016; 44: 178–187. doi: 10.1016/j.actbio.2016.08.007.


Рецензия

Для цитирования:


Пономарева А.С., Баранова Н.В., Басок Ю.Б., Севастьянов В.И. Биомиметики внеклеточного матрикса для тканевой инженерии поджелудочной железы. Вестник трансплантологии и искусственных органов. 2025;27(3):146-159. https://doi.org/10.15825/1995-1191-2025-3-146-159

For citation:


Ponomareva A.S., Baranova N.V., Basok Yu.B., Sevastianov V.I. Extracellular matrix biomimetics for pancreatic tissue engineering. Russian Journal of Transplantology and Artificial Organs. 2025;27(3):146-159. (In Russ.) https://doi.org/10.15825/1995-1191-2025-3-146-159

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)