Development and evaluation of biodegradable silk fibroin scaffolds
https://doi.org/10.15825/1995-1191-2025-2-100-111
Abstract
Objective: to investigate the biodegradation of natural silk-based tissue scaffolds (NS-TS) under in vitro and in vivo conditions, assessing their potential for tissue engineering applications.
Materials and methods. Two types of NS-TS, Fibroplen-Atlas and Fibroplen-Gas, along with their modified versions, were analyzed. In vitro biodegradation was assessed in Fenton’s solution, while in vivo studies were conducted on rats, with histological and morphometric analysis of the implants at 4, 14, and 56 days post-implantation.
Results. In vitro biodegrada- tion studies showed that Fibroplen-Gas completely degraded in <15 days, whereas Fibroplen-Atlas persisted for up to 45 days. In vivo analysis showed gradual resorption of all scaffolds, with Fibroplen-Gas exhibiting more pronounced degradation. Histological examination revealed a macrophage response, formation of foreign-body giant cells, and signs of implant vascularization. Morphometry confirmed a reduction in filament cross-sectional area, particularly in modified samples.
Conclusion. Modifications of NS-TS influence their biodegradation rate, inflammatory response, and vascularization.
About the Authors
E. I. PodbolotovaRussian Federation
Moscow, Dolgoprudny
L. A. Kirsanova
Russian Federation
Moscow
E. G. Kuznetsova
Russian Federation
Moscow
N. V. Grudinin
Russian Federation
Moscow
A. R. Pashutin
Russian Federation
Moscow, Dolgoprudny
O. I. Agapova
Russian Federation
Moscow
A. E. Efimov
Russian Federation
Moscow
E. A. Nemets
Russian Federation
Moscow
Yu. B. Basok
Russian Federation
Moscow
I. I. Agapov
Russian Federation
Igor I. Agapov
1, Shchukinskaya str., Moscow, 123182
References
1. Dionigi B, Fauza DO. Autologous approaches to tissue engineering. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008. 2012 Dec 10. doi: 10.3824/stembook.1.90.1.
2. Williams D. Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol. 2019 May 31; 7: 127. doi: 10.3389/fbioe.2019.00127.
3. Sevastianov VI, Basok YuB, Baranova NV, Belova AD, Grigoriev AM, Kholodenko IV et al. Biomimetics of Extracellular Matrices for Cell and Tissue Engineered Medical Products / Eds. V. Sevastianov and Yu. Basok. Cambridge Scholars Publishing; 2023.
4. Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem. 2023 May; 7 (5): 302–318. doi: 10.1038/s41570-023-00486-x.
5. Kamalathevan P, Ooi PS, Loo YL. Silk-based biomaterials in cutaneous wound healing: A systematic review. Adv Skin Wound Care. 2018 Dec; 31 (12): 565–573. doi: 10.1097/01.ASW.0000546233.35130.a9.
6. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013 Apr; 65 (4): 457–470. doi: 10.1016/j.addr.2012.09.043.
7. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci. 2009 Mar 31; 10 (4): 1514–1524. doi: 10.3390/ijms10041514. PMID: 19468322; PMCID: PMC2680630.
8. Vidya M, Rajagopal S. Silk fibroin: A promising tool for wound healing and skin regeneration. Int J Polym Sci. 2021 Oct; 2021 (6): 1–10. doi: 10.1155/2021/9069924.
9. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001 Jan; 54 (1): 139– 148. doi: 10.1002/1097-4636(200101)54:13.0.CO;2-7.
10. Klimentyev AA, Naboka VA. Biological characteristics of the biodegradable material for bone repair. Medicine: theory and practice. 2021; 3: 6–9. [In Russ, English abstract].
11. Kotliarova MS, Arkhipova AYu, Moysenovich AM, Kulikov DA, Molochkov AV, Moysenovich МM. Trehmernye poristye skaffoldy na osnove fibroina shelka dlya vosstanovleniya kostnoy tkani. Genes & Cells. 2017; 12 (3): 131–132. [In Russ]. doi: 10.23868/gc120968.
12. Liu Q, Huang J, Shao H, Song L, Zhang Y. Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Adv. 2016; 6 7683–7691. doi: 10.1039/C5RA22054H.
13. Safonova L, Bobrova M, Efimov A, Davydova L, Tenchurin T, Bogush V et al. Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats. Pharmaceutics. 2021 Oct 15; 13 (10): 1704. doi: 10.3390/pharmaceutics13101704.
14. Gavrilova NA, Borzenok SA, Revishchin AV, Tishchenko OE, Ostrovkiy DS, Bobrova MM et al. The effect of biodegradable silk fibroin-based scaffolds containing glial cell line-derived neurotrophic factor (GDNF) on the corneal regeneration process. Int J Biol Macromol. 2021 Aug 31; 185: 264–276. doi: 10.1016/j.ijbiomac.2021.06.040.
15. Aigner TB, DeSimone E, Scheibel T. Biomedical applications of recombinant silk-based materials. Adv Mater. 2018 May; 30 (19): e1704636. doi: 10.1002/adma.201704636.
16. Murphy AR, Kaplan DL. Biomedical applications of chemically-modified silk fibroin. J Mater Chem. 2009 Jun 23; 19 (36): 6443–6450. doi: 10.1039/b905802h.
17. Kolesnikov AYu, Prokudina ES, Senokosova EA, Arnt AA, Antonova LV, Mironov AV et al. Results of longterm patency and lifetime visualization of vascular patches from silk fibroin. Clinical and Experimental Surgery. Petrovsky Journal. 2023: 11 (3): 68–75. [In Russ, English abstract]. https://doi.org/10.33029/2308-1198-2023-11-3-68-75.
18. Perrone GS, Leisk GG, Lo TJ, Moreau JE, Haas DS, Papenburg BJ et al. The use of silk-based devices for fracture fixation. Nat Commun. 2014 Mar 4; 5: 3385. doi: 10.1038/ncomms4385. PMID: 24594992.
19. Agapov II, Agapova OI, Efimov AE, Sokolov DYu, Bobrova MM, Safonova LA. Sposob polucheniya biodegradiruemykh skaffoldov na osnove tkaney iz natural’nogo shelka. Patent na izobretenie RU2653428 S1, 08.05.2018.
Supplementary files
Review
For citations:
Podbolotova E.I., Kirsanova L.A., Kuznetsova E.G., Grudinin N.V., Pashutin A.R., Agapova O.I., Efimov A.E., Nemets E.A., Basok Yu.B., Agapov I.I. Development and evaluation of biodegradable silk fibroin scaffolds. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):100-111. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-100-111