Bench studies of a small axial pump for implantation in patients with low anthropometry
https://doi.org/10.15825/1995-1191-2025-2-81-88
Abstract
Objective: to conduct bench tests and determine the working range of the pump speed for an implanted left ven- tricular bypass system aimed at diagnosing and treating patients with low anthropometric status.
Materials and methods. The axial pump was investigated using a custom-developed hydrodynamic test bench simulating the cardiovascular system. The bench included systems for pressure and flow measurement and registration, along with software for processing both technical and biomedical parameters.
Results. The operating range of the rotor speed for the STREAM CARDIO pump required to achieve a flow rate of 2.5 ± 0.5 L/min at a pressure drop of 80 ± 5 mm Hg is 8000 ± 1000 rpm, with a power consumption of 6.5 ± 1 W.
About the Authors
A. S. BuchnevRussian Federation
Alexander S. Buchnev
1, Shchukinskaya str., Moscow, 123182
A. P. Kuleshov
Russian Federation
Moscow
A. A. Drobyshev
Russian Federation
Moscow
V. A. Elenkin
Russian Federation
Moscow
G. A. Shevchenko
Russian Federation
Moscow
N. V. Grudinin
Russian Federation
Moscow
References
1. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009 Apr 14; 53 (15): e1–e90.
2. Taylor DO, Stehlik J, Edwards LB, Aurora P, Christie JD, Dobbels F et al. Registry of the International Society for Heart and Lung Transplantation: twenty-sixth official adult heart transplant report – 2009. J Heart Lung Transplant. 2009 Oct; 28 (10): 1007–1022.
3. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD et al. Clinical management of continuousflow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010 Apr; 29 (4 Suppl): S1–S39.
4. Norman JC, Duncan JM, Frazier OH, Hallman GL, Ott DA, Reul GJ, Cooley DA. Intracorporeal (abdominal) left ventricular assist devices or partial artificial hearts: A five-year clinical experience. Arch Surg. 1981 Nov; 116 (11): 1441–1445.
5. Liotta D, Hall CW, Henly WS, Cooley DA, Crawford ES, Debakey ME. Prolonged assisted circulation during and after cardiac or aortic surgery. prolonged partial left ventricular bypass by means of intracorporeal circulation. Am J Cardiol. 1963 Sep; 12: 399–405.
6. DeBakey ME. Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol. 1971 Jan; 27 (1): 3–11.
7. DeBakey ME, Kennedy JH. Mechanical circulatory support: current status. Am J Cardiol. 1971 Jan; 27 (1): 1–2.
8. Oz MC, Rose EA, Levin HR. Selection criteria for placement of left ventricular assist devices. Am Heart J. 1995 Jan; 129 (1): 173–177.
9. Frazier OH, Rose EA, Macmanus Q, Burton NA, Lefrak EA, Poirier VL, Dasse KA. Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg. 1992 Jun; 53 (6): 1080–1090.
10. Portner PM, Oyer PE, Pennington DG, Baumgartner WA, Griffith BP, Frist WR et al. Implantable electrical left ventricular assist system: bridge to transplantation and the future. Ann Thorac Surg. 1989 Jan; 47 (1): 142–150.
11. Gautier SV, Itkin GP, Shemakin SYu, Saitgareev RSh, Poptsov VN, Zakharevich VM et al. The first experience in clinical application of domestic circulatory support device on basis of implantable axial pump for two stage heart transplantation. Russian Journal of Transplantology and Artificial Organs. 2013; 15 (3): 92–101. [In Russ, English abstract]. doi: 10.15825/1995-1191-2013-3-92-101.
12. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010 Apr 27; 55 (17): 1826–1834.
13. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009 Jul 21; 54 (4): 312–321.
14. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA et al. Second INTERMACS annual report. More than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010 Jan; 29 (1): 1–10.
15. Stevenson LW, Kormos RL. Mechanical cardiac support 2000: current applications and future trial design. J Heart Lung Transpl. 2001 Jan; 20 (1): 1–38.
16. Itkin GP, Filatov IA, Dozorov KN, Adaskin AV. Indirect methods of measuring flоw rate and pressure drop of rotary blood pumps. Russian Journal of Transplantology and Artificial Organs. 2015; 17 (1): 97–102. [In Russ, English abstract]. doi: 10.15825/1995-1191-2015-1-97-102.
17. Ayre PJ, Lowell NH, Woodard JC. Non-invasive flow estimation in an implantable rotory pump: a study considering non-pulsatile and pulsatile flow. Phyiol Meas. 2003 Feb; 24 (1): 179–189.
18. Funakibo A, Ahmed S, Sakuma I, Fukui Y. Flow rate and pressure head estimation in a centrifugal blood pump. Artif Organs. 2002 Nov; 26 (11): 985–990.
19. Giridharan GA, Skliar M. Physiological Control of Blood Pumps Using Intrinsic Pump Parameters: a Computer Simulation Study. Artif Organs. 2006 Apr; 30 (4): 301–307.
20. Schima H, Trubel W, Moritz A, Wieselthaler G, Stohr HG, Thoma H et al. Noninvasive monitoring of rotary blood pumps: necessity, possibilities, and limitations. Artif Organs. 1992 Apr;16(2): 195–202.
21. Itkin GP, Shemakin SJu, Shokhina EG, Burcev VI, Avramov PV, Volkova EA et al. The first domestic implantable axial flow pump: results of experimental studies in calves. Russian Journal of Transplantology and Artificial Organs. 2013; 15 (3): 49–58. [In Russ, English abstract]. doi: 10.15825/1995-1191-2013-3-49-58.
22. Itkin GP, Buchnev AS, Kuleshov AP, Drobyshev AA, Syrbu AI. A hydrodynamic bench for testing pediatric circulatory support devices. Biomedical Engineering. 2022; 56 (1): 6–10. [In Russ, English abstract]. doi: 10.1007/s10527-022-10156-9.
23. Maher TR, Butler KC, Poirier VL, Gernes DB. HeartMate left ventricular assist devices: a multigeneration of implanted blood pumps. Artif Organs. 2001 May; 25 (5): 422–426.
24. Owens WR, Bryant R 3rd, Dreyer WJ, Price JF, Morales DL. Initial Clinical Experience with the HeartMate II Ventricular Assist System in a Pediatric Institution. Artif Organs. 2010 Jul; 34 (7): 600–603.
Supplementary files
Review
For citations:
Buchnev A.S., Kuleshov A.P., Drobyshev A.A., Elenkin V.A., Shevchenko G.A., Grudinin N.V. Bench studies of a small axial pump for implantation in patients with low anthropometry. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):81-88. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-81-88