Lymphocytic RNA stimulates physiological regeneration and enhances microcirculation in the thyroid gland
https://doi.org/10.15825/1995-1191-2025-2-163-170
Abstract
Objective: to investigate the regulatory effects of exogenous lymphocyte RNA on thyroid gland regeneration.
Materials and methods. The study was conducted on 18 male Wistar rats (310–350 g), divided into three groups (n = 6 per group). Group 1 – intact rats; group 2 – control rats (subjected to 6 weeks of physical activity), group 3 – experimental rats (subjected to 6 weeks of physical activity + RNA injection). Total RNA, isolated from the spleen of a 30-day-old pig, was administered four times at a dose of 30 μg/100 g body weight, once per week. Follicular epithelium and vascular structures were analyzed using morphometry, VEGF content was quantified via immunohistochemistry with specific antibodies, and thyroid microvascular function was assessed using laser flowmetry.
Results. Following RNA administration, the relative thyroid gland mass increased by 16%, the folli- cular epithelium area expanded 1.5-fold, and the vasculature area doubled. Additionally, VEGF content increased 2.5-fold compared to intact rats, while microcirculation intensity rose by 64%, and vascular resistance decrea- sed by 21%.
Conclusion. Administration of morphogenetically active total RNA under conditions of increased oxygen demand promotes regenerative hypertrophy of the glandular epithelium and enhances microcirculation in the thyroid gland.
About the Authors
N. V. TishevskayaRussian Federation
Natalya V. Tishevskaya
64, Vorovskogo str., Chelyabinsk, 454092
E. S. Golovneva
Russian Federation
Elena S. Golovneva
Chelyabinsk
R. V. Takhaviev
Russian Federation
Rosticlav V. Takhaviev
Chelyabinsk
References
1. Kusakabe T, Kawaguchi A, Hoshi N, Kawaguchi R, Hoshi S, Kimura S. Thyroid-specific enhancer-binding protein/NKX2.1 is required for the maintenance of ordered architecture and function of the differentiated thyroid. Mol Endocrinol. 2006 Aug; 20 (8): 1796–1809. doi: 10.1210/me.2005-0327.
2. Iwadate M, Takizawa Y, Shirai YT, Kimura S. An in vivo model for thyroid regeneration and folliculogenesis. Lab Invest. 2018 Sep; 98 (9): 1126–1132. doi: 10.1038/s41374-018-0068-x.
3. Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology. 2012 May; 153 (5): 2514–2525. doi: 10.1210/en.2011-1365.
4. Dumont J, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and others. Physiol Rev. 1992 Jul; 72 (3): 667–697. doi: 10.1152/physrev.1992.72.3.667.
5. Krishtop VV, Rumyantseva TA, Nikonorova VG. Peculiarities of thyroid morphology in cerebral hypoperfusion in the complex with short-term exercise in rats with different results in the Morris labyrinth. Journal of Volgograd State Medical University. 2021; 78 (2): 103–107. doi: 10.19163/1994-9480-2021-2(78)-103-107.
6. Kimura H, Davies TF. Thyroid-specific T cells in the normal Wistar rat. I. Characterization of lymph node T cell reactivity to syngeneic thyroid cells and thyroglobulin. Clin Immunol Immunopathol. 1991 Feb; 58 (2): 181–194. doi: 10.1016/0090-1229(91)90135-w.
7. Kimura H, Davies TF. Thyroid-specific T cells in the normal Wistar rat. II. T cell clones interact with cloned Wistar rat thyroid cells and provide direct evidence for autoantigen presentation by thyroid epithelial cells. Clin Immunol Immunopathol. 1991 Feb; 58 (2): 195–206. doi: 10.1016/0090-1229(91)90136-x.
8. Sugihara S, Fujiwara H, Shearer GM. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. Characterization of thyroiditis-inducing T cell lines and clones derived from thyroid lesions. J Immunol. 1993 Jan 15; 150 (2): 683–694.
9. Zha B, Huang X, Lin J, Liu J, Hou Y, Wu G. Distribution of lymphocyte subpopulations in thyroid glands of human autoimmune thyroid disease. J Clin Lab Anal. 2014 May; 28 (3): 249–254. doi: 10.1002/jcla.21674.
10. Yu S, Fang Y, Sharav T, Sharp GC, Braley-Mullen H. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis. J Immunol. 2011 Feb 15; 186 (4): 2655– 2662. doi: 10.4049/jimmunol.1002884.
11. Tishevskaya NV, Shevyakov SA, Zakharov YuM. Vliyaniye eritropoetina i makrofagal’nogo koloniyestimuliruyushchego faktora na proliferativnuyu aktivnost’ eritroidnykh kletok v kul’turakh eritroblasticheskikh ostrovkov. Meditsinskiy akademicheskiy zhurnal. 2003; 3 (3): 67–72. [In Russ.].
12. Gevorkyan NM, Tishevskaya NV, Bolotov AA. Effect of preliminary administration of total RNA of bone marrow cells on the dynamics of erythropoiesis recovery in rats after acute gamma irradiation. Bull Exp Biol Med. 2016 Sep; 161 (5): 670–673. [In Russ., English abstract]. doi: 10.1007/s10517-016-3494-z.
13. Krupatkin AI, Sidorov VV. Funkcional’naya diagnostika sostoyaniya mikrocirkulyatorno-tkanevyh sistem. Kolebaniya, informaciya, nelinejnost’. Rukovodstvo dlya vrachej. Moscow: URSS, 2016; 496. [In Russ.].
14. Tishevskaya NV, Bolotov AA, Zakharov YuM. Matematicheskoye modelirovaniye mezhkletochnykh vzaimodeystviy v kul’ture eritroblasticheskikh ostrovkov. Meditsinskiy akademicheskiy zhurnal. 2005; 5 (4): 50–59. [In Russ.].
15. Kirillov YuB, Chumachenko AP, Aristarkhov VG, Potapov AA, Panteleyev IV. Rapid morphometric method for assessment of thyroid functional activity. Problems of Endocrinology. 1994; 40 (4): 19– 21. [In Russ.] doi: 10.14341/probl12135.
16. Lin Y, Tang Y, Wang F. The Protective effect of HIF-1α in T lymphocytes on cardiac damage in diabetic mice. Ann Clin Lab Sci. 2016 Winter; 46 (1): 32–43.
17. Do Valle Duraes F, Lafont A, Beibel M, Martin K, Darribat K, Cuttat R et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight. 2020 Feb 13; 5 (3): e130651. doi: 10.1172/jci.insight.130651.
18. Hu HF, Hsiu H, Sung CJ, Lee CH. Combining laserDoppler flowmetry measurements with spectral analysis to study different microcirculatory effects in human prediabetic and diabetic subjects. Lasers Med Sci. 2017 Feb; 32 (2): 327. doi: 10.1007/s10103-016-2117-2.
19. Sun PC, Kuo CD, Wei SH, Lin HD. Microvascular reactivity using laser Doppler measurement in type 2 diabetes with subclinical atherosclerosis. Lasers Med Sci. 2023 Feb 28; 38 (1): 80. doi: 10.1007/s10103-023-03737-x.
Supplementary files
Review
For citations:
Tishevskaya N.V., Golovneva E.S., Takhaviev R.V. Lymphocytic RNA stimulates physiological regeneration and enhances microcirculation in the thyroid gland. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):163-170. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-163-170