Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Assessment of liver graft hypoxia via 18F-FMISO PET‑CT imaging

https://doi.org/10.15825/1995-1191-2025-2-54-59

Abstract

Objective: drawing on existing literature and the clinical use of radiopharmaceutical (RFP) 18F-FMISO in on- cology, this pilot study aims to assess the feasibility of using non-invasive PET-CT imaging to detect hypoxia in liver grafts resulting from ischemia-reperfusion injury.

Materials and methods. 18F-FMISO uptake in tumors, as visualized by PET-CT, enables the generation of quantitative maps of tissue hypoxia, a technique that is increa- singly being explored to guide radiation therapy planning. As part of refining the study methodology, the research team successfully obtained the first PET-CT images demonstrating 18F-FMISO uptake in the liver of a patient at a late postoperative stage following liver transplantation.

Results. A positive indication of transplant hypoxia was defined as an increase in both the mean and maximum standardized uptake values (SUVs) when measured at 180 minutes post-intravenous injection of the radiopharmaceutical, compared to measurements at 90 minutes. Two imaging series – CT and PET – were acquired. Diffuse uptake of the radiopharmaceutical was observed in the liver, with greater tracer retention relative to background at 180 minutes compared to 90 minutes post-injection.

Conclusion. The findings suggest the presence of transplant hypoxia despite the absence of biochemical abnor- malities. This technique shows promise as a non-invasive diagnostic tool for detecting hypoxic changes in liver grafts. However, further optimization and validation of the technique are necessary.

About the Authors

I. I. Tileubergenov
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

St. Petersburg



A. A. Ivanova
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

St. Petersburg



A. L. Dolbov
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

St. Petersburg



O. A. Gerasimova
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

Olga A. Gerasimova

70, Leningradskaya str., St. Petersburg, 197758



A. R. Sheraliev
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

St. Petersburg



V. N. Zhuykov
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

St. Petersburg



D. A. Granov
Russian Research Center of Radiology and Surgical Technologies
Russian Federation

St. Petersburg



References

1. Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 2019 May; 39 (5): 788–801. doi: 10.1111/liv.14091.

2. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, KupiecWeglinski JW. Ischaemia-reperfusion injury in liver transplantation – from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013 Feb; 10 (2): 79–89. doi: 10.1038/nrgastro.2012.225.

3. Man K, Fan ST, Lo CM, Liu CL, Fung PC, Liang TB et al. Graft injury in relation to graft size in right lobe live donor liver transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression. Ann Surg. 2003 Feb; 237 (2): 256–264. doi: 10.1097/01.SLA.0000048976.11824.67.

4. Esch JS, Jurk K, Knoefel WT, Roeder G, Voss H, Tustas RY et al. Platelet activation and increased tissue factor expression on monocytes in reperfusion injury following orthotopic liver transplantation. Platelets. 2010; 21 (5): 348–359. doi: 10.3109/09537101003739897.

5. Miyashita T, Nakanuma S, Ahmed AK, Makino I, Hayashi H, Oyama K et al. Ischemia reperfusion-facilitated sinusoidal endothelial cell injury in liver transplantation and the resulting impact of extravasated platelet aggregation. Eur Surg. 2016; 48: 92–98. doi: 10.1007/s10353-015-0363-3.

6. Liu J, Man K. Mechanistic Insight and Clinical Implications of Ischemia/Reperfusion Injury Post Liver Transplantation. Cell Mol Gastroenterol Hepatol. 2023; 15 (6): 1463–1474. doi: 10.1016/j.jcmgh.2023.03.003.

7. Golse N, Guglielmo N, El Metni A, Frosio F, Cosse C, Naili S et al. Arterial Lactate Concentration at the End of Liver Transplantation Is an Early Predictor of Primary Graft Dysfunction. Ann Surg. 2019 Jul; 270 (1): 131– 138. doi: 10.1097/SLA.0000000000002726.

8. Moiseenko AV, Polikarpov AA, Tarazov PG, Granov DA. Initial experience in direct graft perfusion assessment following orthotopic liver transplant. Russian Journal of Transplantology and Artificial Organs. 2020; 22 (3): 99–106. https://doi.org/10.15825/1995-1191-2020-3-99-106.

9. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004 Apr 1; 10 (7): 2245–2252. doi: 10.1158/1078-0432.ccr0688-3.

10. Zschaeck S, Steinbach J, Troost EG. FMISO as a Biomarker for Clinical Radiation Oncology. Recent Results Cancer Res. 2016; 198: 189–201. doi: 10.1007/978-3-662-49651-0_10.

11. Masaki Y, Shimizu Y, Yoshioka T, Tanaka Y, Nishijima K, Zhao S et al. The accumulation mechanism of the hypoxia-imaging probe «FMISO» by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci Rep. 2015 Nov 19; 5: 16802. doi: 10.1038/srep16802.

12. Sorace AG, Elkassem AA, Galgano SJ, Lapi SE, Larimer BM, Partridge SC et al. Imaging for Response Assessment in Cancer Clinical Trials. Semin Nucl Med. 2020 Nov; 50 (6): 488–504. doi: 10.1053/j.semnuclmed.2020.05.001.

13. Abdo R-alla, Lamare F, Allard M, Fernandez P, Bentourkia M. Delineation techniques of tumor hypoxia volume with 18F-FMISO PET imaging. IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). 2018: 1–5. doi: 10.1109/NSSMIC.2018.8824757.

14. Lopes S, Ferreira S, Caetano M. PET/CT in the Evaluation of Hypoxia for Radiotherapy Planning in Head and Neck Tumors: Systematic Literature Review. J Nucl Med Technol. 2021 Jun; 49 (2): 107–113. doi: 10.2967/jnmt.120.249540.

15. Wray R, Mauguen A, Michaud L, Leithner D, Yeh R, Riaz N et al. Development of 18F-Fluoromisonidazole Hypoxia PET/CT Diagnostic Interpretation Criteria and Validation of Interreader Reliability, Reproducibility, and Performance. J Nucl Med. 2024 Oct 1; 65 (10): 1526–1532. doi: 10.2967/jnumed.124.267775. PMID: 39266287; PMCID: PMC11448606.

16. Jagtap R, Asopa RV, Basu S. Evaluating cardiac hypoxia in hibernating myocardium: Comparison of 99mTc MIBI/18F-fluorodeoxyglucose and 18F-fluoromisonidazole positron emission tomography-computed tomography in relation to normal, hibernating, and infarct myocardium. World J Nucl Med. 2019 Jan-Mar; 18 (1): 30–35. doi: 10.4103/wjnm.WJNM_16_18. PMID: 30774543; PMCID: PMC6357711.


Review

For citations:


Tileubergenov I.I., Ivanova A.A., Dolbov A.L., Gerasimova O.A., Sheraliev A.R., Zhuykov V.N., Granov D.A. Assessment of liver graft hypoxia via 18F-FMISO PET‑CT imaging. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):54-59. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-54-59

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)