Современные подходы в профилактике и лечении послеожоговых рубцов (систематический обзор)
https://doi.org/10.15825/1995-1191-2025-2-148-162
Аннотация
Несмотря на достижения современной медицины в области реконструктивной хирургии, профилактика образования грубой рубцовой ткани, ограничивающей функцию конечности или приводящей к косметическому дефекту, остается актуальной проблемой. Не менее важной составляющей в достижении функционального и косметического результата является адекватная коррекция сформировавшихся рубцов. Грубая функциональная недостаточность в области верхних конечностей может приводить к инвалидизации больного. Сочетание хирургических и нехирургических методов лечения должно улучшить функциональность при одновременном снижении риска рецидива. Инъекции обогащенной тромбоцитами плазмы, применение стволовых клеток, пересадка жировой ткани и комбинация терапии ран отрицательным давлением (NPWT) с традиционной реконструкцией лоскутом и другими видами трансплантации становятся все более популярными. Метод лечения ран отрицательным давлением позволяет подготовить раневую поверхность к последующим реконструкциям покровных тканей и является альтернативой традиционным методам перевязки. Созданный над раневой поверхностью после ее закрытия кожным аутотрансплантатом вакуум обеспечивает профилактику воспалительных явлений в основании трансплантата, препятствует формированию избыточной грануляционной ткани и грубых рубцов в долгосрочной перспективе. Механизм формирования гипертрофических и келоидных рубцов до сих пор неясен, установлено, что выделенные клетки костного мозга, такие как фиброциты и кератиноцитоподобные клетки, могут быть членами воспалительного клеточного инфильтрата во время заживления ран, а также могут способствовать развитию кожного фиброза при нарушенном заживлении. Установлен ряд патофизиологических и биохимических процессов, происходящих в тканях при заживлении обширных и глубоких раневых поверхностей. Определена роль кератиноцитов, содержащихся в луковицах волосяных фолликулов, обеспечивающих эпителизацию послеожоговых раневых поверхностей при сохраненных после ожогов дериватах кожи. В отдельных исследованиях доказана положительная роль стромально-васкулярной фракции жировой ткани, активно применяемой в разных фазах раневого процесса, в том числе на стадии формирования келоидных и гипертрофических рубцов. Выделенные из жировой ткани стволовые клетки возможно использовать в сочетании с гидрогелем. Гидрогелевая основа повязок создает влажную среду как в ожоговых ранах, так и на раневых поверхностях после тангенциального или радикального иссечения ожогового струпа, способствует более быстрому заживлению раневых поверхностей, снижая риски рубцовой гиперплазии, а также создает условия для пролонгации медикаментозного эффекта препарата, помещенного на гидрогелевую основу. Своевременное принятие решения о хирургическом лечении глубоких ожогов, сроки выполнения хирургического вмешательства, а также применение современных методов лечения в раннем послеоперационном периоде позволяют снизить риски формирования гипертрофических и келоидных рубцов.
Об авторах
А. С. УмниковРоссия
Умников Алексей Сергеевич
Москва
И. Ив. Глазко
Россия
Глазко Ирина Ивановна
Москва
Е. И. Балакин
Россия
Балакин Евгений Игоревич
123098, Москва, ул. Живописная, д. 46, корп. 8
А. С. Самойлов
Россия
Самойлов Александр Сергеевич
Москва
В. И. Пустовойт
Россия
Пустовойт Василий Игоревич
Москва
Список литературы
1. Karakol P, Bozkurt M. Recent strategic approach in postburn extremity scars and contractures. J Plast Surg Hand Surg. 2021 Jun; 55 (3): 153–161.
2. Askari M, Cohen MJ, Grossman PH, Kulber DA. The use of acellular dermal matrix in release of burn contracture scars in the hand. Plast Reconstr Surg. 2011 Apr; 127 (4): 1593–1599.
3. Blackburn JH 2nd, Boemi L, Hall WW, Jeffords K, Hauck RM, Banducci DR, Graham WP 3rd. Negativepressure dressings as a bolster for skin grafts. Ann Plast Surg. 1998 May; 40 (5): 453–457.
4. Hanasono MM, Skoracki RJ. Securing skin grafts to microvascular free flaps using the vacuum-assisted closure (VAC) device. Ann Plast Surg. 2007 May; 58 (5): 573– 576.
5. Scherer LA, Shiver S, Chang M, Meredith JW, Owings JT. The vacuum assisted closure device: a method of securing skin grafts and improving graft survival. Arch Surg. 2002 Aug; 137 (8): 930–933; discussion 933–934.
6. Stone PA, Hass SM, Flaherty SK, DeLuca JA, Lucente FC, Kusminsky RE. Vacuum-assisted fascial closure for patients with abdominal trauma. J Trauma. 2004 Nov; 57 (5): 1082–1086.
7. Tang AT, Okri SK, Haw MP. Vacuum-assisted closure to treat deep sternal wound infection following cardiac surgery. J Wound Care. 2000 May; 9 (5): 229–230.
8. Nakayama Y, Iino T, Soeda S. A new method for the dressing of free skin grafts. Plast Reconstr Surg. 1990 Dec; 86 (6): 1216–1219.
9. Stokes TH, Follmar KE, Silverstein AD, Weizer AZ, Donatucci CF, Anderson EE, Erdmann D. Use of negativepressure dressings and split-thickness skin grafts following penile shaft reduction and reduction scrotoplasty in the management of penoscrotal elephantiasis. Ann Plast Surg. 2006 Jun; 56 (6): 649–653.
10. Landau AG, Hudson DA, Adams K, Geldenhuys S, Pienaar C. Full-thickness skin grafts: maximizing graft take using negative pressure dressings to prepare the graft bed. Ann Plast Surg. 2008 Jun; 60 (6): 661–666.
11. Gáspár K, Erdei I, Péter Z, Dezsö B, Hunyadi J, Juhász I. Role of acellular dermal matrix allograft in minimal invasive coverage of deep burn wound with bone exposed – case report and histological evaluation. Int Wound J. 2006 Mar; 3 (1): 51–58.
12. Alser OH, Goutos I. The evidence behind the use of platelet-rich plasma (PRP) in scar management: a literature review. Scars Burn Heal. 2018 Nov 18; 4: 2059513118808773.
13. Medina A, Ghahary A. Fibrocytes can be reprogrammed to promote tissue remodeling capacity of dermal fibroblasts. Mol Cell Biochem. 2010 Nov; 344 (1–2): 11–21.
14. Medina A, Brown E, Carr N, Ghahary A. Circulating monocytes have the capacity to be transdifferentiated into keratinocyte-like cells. Wound Repair Regen. 2009 Mar-Apr; 17 (2): 268–277.
15. Medina A, Ghahary A. Transdifferentiated circulating monocytes release exosomes containing 14-3-3 proteins with matrix metalloproteinase-1 stimulating effect for dermal fibroblasts. Wound Repair Regen. 2010 Mar-Apr; 18 (2): 245–253.
16. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994 Nov; 1 (1): 71–81.
17. Jabs A, Moncada GA, Nichols CE, Waller EK, Wilcox JN. Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue. J Vasc Res. 2005 Mar-Apr; 42 (2): 174–180.
18. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003 Nov; 74 (5): 833– 845.
19. Kodama H, Inoue T, Watanabe R, Yasuoka H, Kawakami Y, Ogawa S et al. Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes. Stem Cells Dev. 2005 Dec; 14 (6): 676–686.
20. Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007 Sep; 87 (9): 858–870.
21. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol. 2004 Apr; 36 (4): 598–606.
22. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001 Jun 15; 166 (12): 7556–7562.
23. Kao HK, Chen B, Murphy GF, Li Q, Orgill DP, Guo L. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Ann Surg. 2011 Dec; 254 (6): 1066–1074.
24. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008 Feb 15; 180 (4): 2581–2587.
25. Inokuma D, Abe R, Fujita Y, Sasaki M, Shibaki A, Nakamura H et al. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells. 2006 Dec; 24 (12): 2810–2816.
26. Nedeau AE, Bauer RJ, Gallagher K, Chen H, Liu ZJ, Velazquez OC. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2008 Jul 1; 314 (11–12): 2176–2186.
27. Chesney J, Bacher M, Bender A, Bucala R. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci USA. 1997 Jun 10; 94 (12): 6307–6312.
28. Geppert TD, Lipsky PE. Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J Immunol. 1985 Dec; 135 (6): 3750–3762.
29. Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest. 2002 Sep; 82 (9): 1183–1192.
30. Chesney J, Bucala R. Peripheral blood fibrocytes: mesenchymal precursor cells and the pathogenesis of fibrosis. Curr Rheumatol Rep. 2000 Dec; 2 (6): 501–505.
31. Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA et al. Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen. 2005 Jul-Aug; 13 (4): 398–404.
32. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol. 1998 Jan 1; 160 (1): 419–425.
33. Langton AK, Herrick SE, Headon DJ. An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol. 2008 May; 128 (5): 1311–1318. doi: 10.1038/sj.jid.5701178.
34. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004; 22 (5): 812–822.
35. Han SK, Yoon TH, Lee DG, Lee MA, Kim WK. Potential of human bone marrow stromal cells to accelerate wound healing in vitro. Ann Plast Surg. 2005 Oct; 55 (4): 414–419.
36. Burd A, Ahmed K, Lam S, Ayyappan T, Huang L. Stem cell strategies in burns care. Burns. 2007 May; 33 (3): 282–291.
37. Park SR, Kim JW, Jun HS, Roh JY, Lee HY, Hong IS. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. Mol Ther. 2018 Feb 7; 26 (2): 606–617.
38. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr; 7 (2): 211–228.
39. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002 Dec; 13 (12): 4279–4295.
40. Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun. 2005 Jul 22; 333 (1): 116–121.
41. Dominici M, Le Blanc K, MuellerI, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317.
42. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007 May 11; 100 (9): 1249–1260.
43. Akita S, Akino K, Hirano A, Ohtsuru A, Yamashita S. Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury. Stem Cells Int. 2010 Dec 1; 2010: 532704.
44. Brown SA, Levi B, Lequex C, Wong VW, Mojallal A, Longaker MT. Basic science review on adipose tissue for clinicians. Plast Reconstr Surg. 2010 Dec; 126 (6): 1936–1946.
45. Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg. 1995 SepOct; 19 (5): 421–425.
46. Coleman SR. Structural fat grafts: the ideal filler? Clin Plast Surg. 2001 Jan; 28 (1): 111–119.
47. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007 Oct; 48 (1): 15–24.
48. Lolli P, Malleo G, Rigotti G. Treatment of chronic anal fissures and associated stenosis by autologous adipose tissue transplant: a pilot study. Dis Colon Rectum. 2010 Apr; 53 (4): 460–466.
49. Bene MD, Pozzi MR, Rovati L, Mazzola I, Erba G, Bonomi S. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis. Handchir Mikrochir Plast Chir. 2014 Aug; 46 (4): 242–247.
50. Viard R, Bouguila J, Voulliaume D, Comparin JP, Dionyssopoulos A, Foyatier JL. [Fat grafting in facial burns sequelae]. Ann Chir Plast Esthet. 2012 Jun; 57 (3): 217– 229.
51. Sultan SM, Barr JS, Butala P, Davidson EH, Weinstein AL, Knobel D et al. Fat grafting accelerates revascularisation and decreases fibrosis following thermal injury. J Plast Reconstr Aesthet Surg. 2012 Feb; 65 (2): 219–227.
52. Carpaneda CA, Ribeiro MT. Study of the histologic alterations and viability of the adipose graft in humans. Aesthetic Plast Surg. 1993 Winter; 17 (1): 43–47.
53. Sarantopoulos CN, Banyard DA, Ziegler ME, Sun B, Shaterian A, Widgerow AD. Elucidating the Preadipocyte and Its Role in Adipocyte Formation: a Comprehensive Review. Stem Cell Rev Rep. 2018 Feb; 14 (1): 27–42.
54. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013 Jun; 15 (6): 641–648.
55. Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014 Mar; 1842 (3): 358–369.
56. Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012; 58 (1): 15–23.
57. Pierpont YN, Dinh TP, Salas RE, Johnson EL, Wright TG, Robson MC, Payne WG. Obesity and surgical wound healing: a current review. ISRN Obes. 2014 Feb 20; 2014: 638936.
58. Shibata S, Tada Y, Asano Y, Hau CS, Kato T, Saeki H et al. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J Immunol. 2012 Sep 15; 189 (6): 3231–3241.
59. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016 Sep 12; 6: 32993.
60. Makino T, Jinnin M, Muchemwa FC, Fukushima S, Kogushi-Nishi H, Moriya C et al. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br J Dermatol. 2010 Apr; 162 (4): 717–723.
61. Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z et al. Cellfree therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018 Sep 15; 370 (2): 333–342.
62. Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 2019 Jan 31; 10 (1): 47. doi: 10.1186/s13287-019-1152-x.
63. Ezure T, Amano S. Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts. Biofactors. 2007; 31 (3–4): 229–236.
64. Palmieri B, Vadalà M, Laurino C. Nutrition in wound healing: investigation of the molecular mechanisms, a narrative review. J Wound Care. 2019 Oct 2; 28 (10): 683–693.
65. Profyris C, Tziotzios C, Do Vale I. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation. J Am Acad Dermatol. 2012 Jan; 66 (1): 1–10; quiz 11–12.
66. Ogawa R. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids. Plast Reconstr Surg. 2010 Feb; 125 (2): 557–568.
67. Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S. TGF-beta modulates beta-Catenin stability and signaling in mesenchymal proliferations. Exp Cell Res. 2007 Aug 1; 313 (13): 2887–2895.
68. Widelitz RB. Wnt signaling in skin organogenesis. Organogenesis. 2008 Apr; 4 (2): 123–133.
69. Hiwatashi N, Hirano S, Mizuta M, Kobayashi T, Kawai Y, Kanemaru SI et al. The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar. J Tissue Eng Regen Med. 2017 May; 11 (5): 1598–1609.
70. Wang L, Yang J, Ran B, Yang X, Zheng W, Long Y, Jiang X. Small Molecular TGF-β1-Inhibitor-Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. ACS Appl Mater Interfaces. 2017 Sep 27; 9 (38): 32545–32553.
71. Bu Y, Zhang L, Sun G, Sun F, Liu J, Yang F et al. TetraPEG Based Hydrogel Sealants for In Vivo Visceral Hemostasis. Adv Mater. 2019 Jul; 31 (28): e1901580.
72. Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen. 2014 Jan-Feb; 22 (1): 14–22.
73. Atacan K, Özacar M, Özacar M. Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles. Int J Biol Macromol. 2018 Apr 1; 109: 720–731.
74. Lawrence JW, Mason ST, Schomer K, Klein MB. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res. 2012 Jan-Feb; 33 (1): 136–146.
75. Bock O, Schmid-Ott G, Malewski P, Mrowietz U. Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res. 2006 Apr; 297 (10): 433–438. doi: 10.1007/s00403-006-0651-7.
76. Fei X, Yuan W, Zhao Y, Wang H, Bai S, Huang Q. Papain Ameliorates the MPAs Formation-Mediated Activation of Monocytes by Inhibiting Cox-2 Expression via Regulating the MAPKs and PI3K/Akt Signal Pathway. Biomed Res Int. 2018 Oct 16; 2018: 3632084. doi: 10.1155/2018/3632084.
77. Stremnitzer C, Manzano-Szalai K, Willensdorfer A, Starkl P, Pieper M, König P et al. Papain Degrades Tight Junction Proteins of Human Keratinocytes In Vitro and Sensitizes C57BL/6 Mice via the Skin Independent of its Enzymatic Activity or TLR4 Activation. J Invest Dermatol. 2015 Jul; 135 (7): 1790–1800.
78. Kumano K, Nishinakamura H, Mera T, Itoh T, Takahashi H, Fujiwara T, Kodama S. Pretreatment of donor islets with papain improves allograft survival without systemic immunosuppression in mice. Islets. 2016 Sep 2; 8 (5): 145–155.
79. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004 May; 18 (7): 816–827.
80. Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine. 2018 Apr 12; 13: 2217–2263.
81. Yuan N, Shao K, Huang S, Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int J Biol Macromol. 2023 Jun 15; 240: 124321.
82. Hudek M, Kubiak-Ossowska K, Johnston K, Ferro VA, Mulheran PA. Chitin and Chitosan Binding to the α-Chitin Crystal: A Molecular Dynamics Study. ACS Omega. 2023 Jan 10; 8 (3): 3470–3477.
83. Zaitsev SY, Savina AA, Zaitsev IS. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Adv Colloid Interface Sci. 2019 Oct; 272: 102016.
84. Shang NS, Cui BH, Wang C, Gao H, Xu B, Zhao R, Huo R. A prospective randomized controlled study of the application effect of hydrogel dressings on deep partialthickness burn wounds after dermabrasion and tangential excision. Zhonghua Shao Shang Za Zhi. 2021 Nov 20; 37 (11): 1085–1089.
85. Wang S, Wu S, Yang Y, Zhang J, Wang Y, Zhang R, Yang L. Versatile Hydrogel Dressings That Dynamically Regulate the Healing of Infected Deep Burn Wounds. Adv Healthc Mater. 2023 Dec; 12 (30): e2301224.
86. Mustoe TA. Evolution of silicone therapy and mechanism of action in scar management. Aesthetic Plast Surg. 2008 Jan; 32 (1): 82–92.
Рецензия
Для цитирования:
Умников А.С., Глазко И.И., Балакин Е.И., Самойлов А.С., Пустовойт В.И. Современные подходы в профилактике и лечении послеожоговых рубцов (систематический обзор). Вестник трансплантологии и искусственных органов. 2025;27(2):148-162. https://doi.org/10.15825/1995-1191-2025-2-148-162
For citation:
Umnikov A.S., Glazko I.I., Balakin E.I., Samoilov A.S., Pustovoit V.I. Modern strategies for the prevention and treatment of post-burn scars (a systematic review). Russian Journal of Transplantology and Artificial Organs. 2025;27(2):148-162. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-148-162