Modern strategies for the prevention and treatment of post-burn scars (a systematic review)
https://doi.org/10.15825/1995-1191-2025-2-148-162
Abstract
Despite advancements in modern reconstructive surgery, preventing the formation of thick scar tissue that impairs limb function or causes cosmetic defects remains a critical challenge. Equally important is the effective correction of existing scars to optimize both functional and aesthetic outcomes. Severe functional impairment of the upper limbs can result in disability. A combination of surgical and nonsurgical interventions is essential to enhance functionality while minimizing the risk of scar recurrence. Platelet-rich plasma injections, stem cell therapy, adipose tissue transplantation, and a combination of negative pressure wound therapy (NPWT) with traditional flap reconstruction and other transplantation methods are gaining popularity in modern reconstructive surgery. NPWT plays a crucial role in preparing the wound bed for subsequent tissue reconstruction and serves as an effective alternative to traditional dressings. The vacuum created over the wound after closure with a skin autograft helps prevent inflammation at the graft base, reduces excessive granulation tissue formation, and minimizes the risk of rough scar development in the long term. The mechanisms of formation of hypertrophic scar and keloids have not yet been completely understood. However, research indicates that bone marrow-derived cells, including fibrocytes and keratinocyte-like cells, contribute to the inflammatory cell infiltrate during wound healing, and can play a role in cutaneous fibrosis, especially in cases of impaired healing. Several pathophysiological and biochemical processes involved in the repair of extensive and deep wounds have been established. Additionally, the role of keratinocytes within hair follicle bulbs in promoting epithelialization of post-burn wound surfaces, particularly in areas with preserved skin appendages, has been recognized. Studies indicate that stromal-vascular fraction of adipose tissue plays a positive role in various stages of wound healing, including keloid and hypertrophic scar formation. Adipose-derived stem cells can be used in combination with hydrogel. The hydrogel base of dressings maintains a moist environment in both burn wounds and wound surfaces following tangential or radical excision of burn scab. This promotes faster wound healing, reduces the risk of scar hyperplasia, and enhances the sustained release and effectiveness of medications applied to the hydrogel base. Prompt surgical intervention, including early excision and grafting, along with modern treatment methods in the early postoperative period for deep burns, can significantly reduce the risk of hypertrophic and keloid scar formation.
About the Authors
A. S. UmnikovRussian Federation
Moscow
I. I. Glazko
Russian Federation
Moscow
E. I. Balakin
Russian Federation
Evgenii Balakin
46/8, Zhivopisnaya str., 123098, Moscow
A. S. Samoilov
Russian Federation
Moscow
V. I. Pustovoit
Russian Federation
Moscow
References
1. Abe R. [и др.]. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites // Journal of Immunology (Baltimore, Md.: 1950). 2001. № 12 (166). C. 7556–7562.
2. Akita S. [и др.]. Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury // Stem Cells International. 2010. (2010). C. 532704.
3. Alser O. H., Goutos I. The evidence behind the use of platelet-rich plasma (PRP) in scar management: a literature review // Scars, Burns & Healing. 2018. (4). C. 2059513118808773.
4. Amini Nik S. [и др.]. TGF-beta modulates beta-Catenin stability and signaling in mesenchymal proliferations // Experimental Cell Research. 2007. № 13 (313). C. 2887–2895.
5. Askari M. [и др.]. The use of acellular dermal matrix in release of burn contracture scars in the hand // Plastic and Reconstructive Surgery. 2011. № 4 (127). C. 1593–1599.
6. Atacan K., Özacar M., Özacar M. Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles // International Journal of Biological Macromolecules. 2018. (109). C. 720–731.
7. Bellini A., Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses // Laboratory Investigation; a Journal of Technical Methods and Pathology. 2007. № 9 (87). C. 858–870.
8. Bene M. D. [и др.]. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis // Handchirurgie, Mikrochirurgie, Plastische Chirurgie: Organ Der Deutschsprachigen Arbeitsgemeinschaft Fur Handchirurgie: Organ Der Deutschsprachigen Arbeitsgemeinschaft Fur Mikrochirurgie Der Peripheren Nerven Und Gefasse: Organ Der V... 2014. № 4 (46). C. 242–247.
9. Blackburn J. H. [и др.]. Negative-pressure dressings as a bolster for skin grafts // Annals of Plastic Surgery. 1998. № 5 (40). C. 453–457.
10. Bourin P. [и др.]. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) // Cytotherapy. 2013. № 6 (15). C. 641–648.
11. Brown S. A. [и др.]. Basic science review on adipose tissue for clinicians // Plastic and Reconstructive Surgery. 2010. № 6 (126). C. 1936–1946.
12. Bu Y. [и др.]. Tetra-PEG Based Hydrogel Sealants for In Vivo Visceral Hemostasis // Advanced Materials (Deerfield Beach, Fla.). 2019. № 28 (31). C. e1901580.
13. Bucala R. [и др.]. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair // Molecular Medicine (Cambridge, Mass.). 1994. № 1 (1). C. 71–81.
14. Burd A. [и др.]. Stem cell strategies in burns care // Burns: Journal of the International Society for Burn Injuries. 2007. № 3 (33). C. 282–291.
15. Carpaneda C. A., Ribeiro M. T. Study of the histologic alterations and viability of the adipose graft in humans // Aesthetic Plastic Surgery. 1993. № 1 (17). C. 43–47.
16. Chesney J. [и др.]. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ // Proceedings of the National Academy of Sciences of the United States of America. 1997. № 12 (94). C. 6307–6312.
17. Chesney J., Bucala R. Peripheral blood fibrocytes: mesenchymal precursor cells and the pathogenesis of fibrosis // Current Rheumatology Reports. 2000. № 6 (2). C. 501–505.
18. Coleman S. R. Long-term survival of fat transplants: controlled demonstrations // Aesthetic Plastic Surgery. 1995. № 5 (19). C. 421–425.
19. Coleman S. R. Structural fat grafts: the ideal filler? // Clinics in Plastic Surgery. 2001. № 1 (28). C. 111–119.
20. Dominici M. [и др.]. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. 2006. № 4 (8). C. 315–317.
21. Ezure T., Amano S. Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts // BioFactors (Oxford, England). 2007. № 3–4 (31). C. 229–236.
22. Fathke C. [и др.]. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair // Stem Cells (Dayton, Ohio). 2004. № 5 (22). C. 812–822.
23. Fujimura J. [и др.]. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice // Biochemical and Biophysical Research Communications. 2005. № 1 (333). C. 116–121.
24. Gáspár K. [и др.]. Role of acellular dermal matrix allograft in minimal invasive coverage of deep burn wound with bone exposed--case report and histological evaluation // International Wound Journal. 2006. № 1 (3). C. 51–58.
25. Geppert T. D., Lipsky P. E. Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression // Journal of Immunology (Baltimore, Md.: 1950). 1985. № 6 (135). C. 3750–3762.
26. Gimble J. M., Katz A. J., Bunnell B. A. Adipose-derived stem cells for regenerative medicine // Circulation Research. 2007. № 9 (100). C. 1249–1260.
27. Han S.-K. [и др.]. Potential of human bone marrow stromal cells to accelerate wound healing in vitro // Annals of Plastic Surgery. 2005. № 4 (55). C. 414–419.
28. Hanasono M. M., Skoracki R. J. Securing skin grafts to microvascular free flaps using the vacuum-assisted closure (VAC) device // Annals of Plastic Surgery. 2007. № 5 (58). C. 573–576.
29. Hiwatashi N. [и др.]. The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar // Journal of Tissue Engineering and Regenerative Medicine. 2017. № 5 (11). C. 1598–1609.
30. Hu L. [и др.]. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts // Scientific Reports. 2016. (6). C. 32993.
31. Hudek M. [и др.]. Chitin and Chitosan Binding to the α-Chitin Crystal: A Molecular Dynamics Study // ACS omega. 2023. № 3 (8). C. 3470–3477.
32. Inokuma D. [и др.]. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes // Stem Cells (Dayton, Ohio). 2006. № 12 (24). C. 2810–2816.
33. Jabs A. [и др.]. Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue // Journal of Vascular Research. 2005. № 2 (42). C. 174–180.
34. Kao H.-K. [и др.]. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis // Annals of Surgery. 2011. № 6 (254). C. 1066–1074.
35. Kim W.-S. [и др.]. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts // Journal of Dermatological Science. 2007. № 1 (48). C. 15–24.
36. Kodama H. [и др.]. Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes // Stem Cells and Development. 2005. № 6 (14). C. 676–686.
37. Kumano K. [и др.]. Pretreatment of donor islets with papain improves allograft survival without systemic immunosuppression in mice // Islets. 2016. № 5 (8). C. 145–155.
38. Kuwana M. [и др.]. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation // Journal of Leukocyte Biology. 2003. № 5 (74). C. 833–845.
39. Landau A. G. [и др.]. Full-thickness skin grafts: maximizing graft take using negative pressure dressings to prepare the graft bed // Annals of Plastic Surgery. 2008. № 6 (60). C. 661–666.
40. Lawrence J. W. [и др.]. Epidemiology and impact of scarring after burn injury: a systematic review of the literature // Journal of Burn Care & Research: Official Publication of the American Burn Association. 2012. № 1 (33). C. 136–146.
41. Leask A., Abraham D. J. TGF-beta signaling and the fibrotic response // FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2004. № 7 (18). C. 816–827.
42. Lee Y.-H., Mottillo E. P., Granneman J. G. Adipose tissue plasticity from WAT to BAT and in between // Biochimica Et Biophysica Acta. 2014. № 3 (1842). C. 358–369.
43. Lolli P., Malleo G., Rigotti G. Treatment of chronic anal fissures and associated stenosis by autologous adipose tissue transplant: a pilot study // Diseases of the Colon and Rectum. 2010. № 4 (53). C. 460–466.
44. Makino T. [и др.]. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways // The British Journal of Dermatology. 2010. № 4 (162). C. 717–723.
45. Medina A. [и др.]. Circulating monocytes have the capacity to be transdifferentiated into keratinocyte-like cells // Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 2009. № 2 (17). C. 268–277.
46. Medina A., Ghahary A. Transdifferentiated circulating monocytes release exosomes containing 14-3-3 proteins with matrix metalloproteinase-1 stimulating effect for dermal fibroblasts // Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 2010. № 2 (18). C. 245–253.
47. Medina A., Ghahary A. Fibrocytes can be reprogrammed to promote tissue remodeling capacity of dermal fibroblasts // Molecular and Cellular Biochemistry. 2010. № 1–2 (344). C. 11–21.
48. Mustoe T. A. Evolution of silicone therapy and mechanism of action in scar management // Aesthetic Plastic Surgery. 2008. № 1 (32). C. 82–92.
49. Nakayama Y., Iino T., Soeda S. A new method for the dressing of free skin grafts // Plastic and Reconstructive Surgery. 1990. № 6 (86). C. 1216–1219.
50. Nedeau A. E. [и др.]. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells // Experimental Cell Research. 2008. № 11–12 (314). C. 2176–2186.
51. Ogawa R. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids // Plastic and Reconstructive Surgery. 2010. № 2 (125). C. 557–568.
52. Palmieri B., Vadalà M., Laurino C. Nutrition in wound healing: investigation of the molecular mechanisms, a narrative review // Journal of Wound Care. 2019. № 10 (28). C. 683–693.
53. Park S.-R. [и др.]. Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing // Molecular Therapy: The Journal of the American Society of Gene Therapy. 2018. № 2 (26). C. 606–617.
54. Percin Karakol 1, Mehmet Bozkurt 1 Recent strategic approach in postburn extremity scars and contractures 2020. № 2021 Jun. C. 153–161.
55. Pierpont Y. N. [и др.]. Obesity and surgical wound healing: a current review // ISRN obesity. 2014. (2014). C. 638936.
56. Profyris C., Tziotzios C., Do Vale I. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation // Journal of the American Academy of Dermatology. 2012. № 1 (66). C. 1–10; quiz 11–12.
57. Quan T. E. [и др.]. Circulating fibrocytes: collagen-secreting cells of the peripheral blood // The International Journal of Biochemistry & Cell Biology. 2004. № 4 (36). C. 598–606.
58. Saely C. H., Geiger K., Drexel H. Brown versus white adipose tissue: a mini-review // Gerontology. 2012. № 1 (58). C. 15–23.
59. Sarantopoulos C. N. [и др.]. Elucidating the Preadipocyte and Its Role in Adipocyte Formation: a Comprehensive Review // Stem Cell Reviews and Reports. 2018. № 1 (14). C. 27–42.
60. Sasaki M. [и др.]. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type // Journal of Immunology (Baltimore, Md.: 1950). 2008. № 4 (180). C. 2581–2587.
61. Scherer L. A. [и др.]. The vacuum assisted closure device: a method of securing skin grafts and improving graft survival // Archives of Surgery (Chicago, Ill.: 1960). 2002. № 8 (137). C. 930–933; discussion 933-934.
62. Shahrokhi S., Arno A., Jeschke M. G. The use of dermal substitutes in burn surgery: acute phase // Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 2014. № 1 (22). C. 14–22.
63. Shang N. S. [и др.]. [A prospective randomized controlled study of the application effect of hydrogel dressings on deep partial-thickness burn wounds after dermabrasion and tangential excision] // Zhonghua Shao Shang Za Zhi = Zhonghua Shaoshang Zazhi = Chinese Journal of Burns. 2021. № 11 (37). C. 1085–1089.
64. Shibata S. [и др.]. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway // Journal of Immunology (Baltimore, Md.: 1950). 2012. № 6 (189). C. 3231–3241.
65. Stokes T. H. [и др.]. Use of negative-pressure dressings and split-thickness skin grafts following penile shaft reduction and reduction scrotoplasty in the management of penoscrotal elephantiasis // Annals of Plastic Surgery. 2006. № 6 (56). C. 649–653.
66. Stone P. A. [и др.]. Vacuum-assisted fascial closure for patients with abdominal trauma // The Journal of Trauma. 2004. № 5 (57). C. 1082–1086.
67. Stremnitzer C. [и др.]. Papain Degrades Tight Junction Proteins of Human Keratinocytes In Vitro and Sensitizes C57BL/6 Mice via the Skin Independent of its Enzymatic Activity or TLR4 Activation // The Journal of Investigative Dermatology. 2015. № 7 (135). C. 1790–1800.
68. Sultan S. M. [и др.]. Fat grafting accelerates revascularisation and decreases fibrosis following thermal injury // Journal of plastic, reconstructive & aesthetic surgery: JPRAS. 2012. № 2 (65). C. 219–227.
69. Tang A. T., Okri S. K., Haw M. P. Vacuum-assisted closure to treat deep sternal wound infection following cardiac surgery // Journal of Wound Care. 2000. № 5 (9). C. 229–230.
70. Viard R. [и др.]. [Fat grafting in facial burns sequelae] // Annales De Chirurgie Plastique Et Esthetique. 2012. № 3 (57). C. 217–229.
71. Wang L. [и др.]. Small Molecular TGF-β1-Inhibitor-Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars // ACS applied materials & interfaces. 2017. № 38 (9). C. 32545–32553.
72. Wang S. [и др.]. Versatile Hydrogel Dressings That Dynamically Regulate the Healing of Infected Deep Burn Wounds // Advanced Healthcare Materials. 2023. № 30 (12). C. e2301224.
73. Widelitz R. B. Wnt signaling in skin organogenesis // Organogenesis. 2008. № 2 (4). C. 123–133.
74. Yang K. [и др.]. Antimicrobial hydrogels: promising materials for medical application // International Journal of Nanomedicine. 2018. (13). C. 2217–2263.
75. Yang L. [и др.]. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells // Laboratory Investigation; a Journal of Technical Methods and Pathology. 2002. № 9 (82). C. 1183–1192.
76. Yang L. [и др.]. Identification of fibrocytes in postburn hypertrophic scar // Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 2005. № 4 (13). C. 398–404.
77. Yuan N. [и др.]. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review // International Journal of Biological Macromolecules. 2023. (240). C. 124321.
78. Zaitsev S. Y., Savina A. A., Zaitsev I. S. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology // Advances in Colloid and Interface Science. 2019. (272). C. 102016.
79. Zhang W. [и др.]. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway // Experimental Cell Research. 2018. № 2 (370). C. 333–342.
80. Zuk P. A. [и др.]. Multilineage cells from human adipose tissue: implications for cell-based therapies // Tissue Engineering. 2001. № 2 (7). C. 211–228.
81. Zuk P. A. [и др.]. Human adipose tissue is a source of multipotent stem cells // Molecular Biology of the Cell. 2002. № 12 (13). C. 4279–4295.
82. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes - PubMed [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/9551999/ (дата обращения: 13.05.2024).
83. An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution - PubMed [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/18037901/ (дата обращения: 13.05.2024).
84. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways - PubMed [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/30704535/ (дата обращения: 13.05.2024).
85. Quality of life of patients with keloid and hypertrophic scarring - PubMed [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/16528552/ (дата обращения: 13.05.2024).
86. Papain Ameliorates the MPAs Formation-Mediated Activation of Monocytes by Inhibiting Cox-2 Expression via Regulating the MAPKs and PI3K/Akt Signal Pathway - PubMed [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/30410927/ (дата обращения: 13.05.2024).
Review
For citations:
Umnikov A.S., Glazko I.I., Balakin E.I., Samoilov A.S., Pustovoit V.I. Modern strategies for the prevention and treatment of post-burn scars (a systematic review). Russian Journal of Transplantology and Artificial Organs. 2025;27(2):148-162. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-148-162