Preclinical evaluation of tissue-engineered vascular grafts with biodegradable components: assessing the effectiveness of animal models from rats to primates
https://doi.org/10.15825/1995-1191-2025-2-127-138
Abstract
Currently, there are no highly effective small-diameter (≤4 mm) grafts on the market for cardiovascular surgery. Tissue-engineered, functionally active vascular grafts with prolonged resorption and regeneration capacity have the potential to serve as alternatives to traditional arterial grafts. These bioengineered grafts could eliminate the need for repeated surgical interventions to replace failed grafts. The accuracy of assessing the risks of failure in biodegradable small-diameter vascular grafts (SDVGs) during preclinical trials is highly dependent on the choice of animal model. This article presents the results of comprehensive preclinical trials conducted on an SDVG developed at the Research Institute for Complex Issues of Cardiovascular Diseases. Based on these findings, the study evaluates the effectiveness and feasibility of different animal models for testing biodegradable SDVGs.
About the Authors
L. V. AntonovaRussian Federation
Larisa V. Antonova
6, Bul’var im. Akademika L.S. Barbarasha, Kemerovo, 650002
E. A. Senokosova
Russian Federation
Kemerovo
A. V. Mironov
Russian Federation
Kemerovo
A. R. Shabaev
Russian Federation
Kemerovo
E. S. Sardin
Russian Federation
Kemerovo
V. G. Matveeva
Russian Federation
Kemerovo
E. O. Krivkina
Russian Federation
Kemerovo
M. Yu. Khanova
Russian Federation
Kemerovo
E. A. Torgunakova
Russian Federation
Kemerovo
References
1. Nelson RA, Rhee EK, Alaeddine M, Nikkhah M. Advances in Biomaterials for Promoting Vascularization. Curr Stem Cell Rep. 2022; 8: 184–196. doi: 10.1007/s40778- 022-00217-w.
2. Naegeli KM, Kural MH, Li Yu, Wang J, Hugentobler EA, Niklason LE. Bioengineering Human Tissues and the Future of Vascular Replacement. Circ Res. 2022 Jun 24; 131 (1): 109–126. doi: 10.1161/CIRCRESAHA.121.319984.
3. Bokeriya LA, Milievskaya EB, Pryanishnikov VV, Yurlov IA, Kudzoeva ZF. Serdechno-sosudistaya khirurgiya – 2021. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya. M: NMITs SSKh im. A.N. Bakuleva, 2022; 310.
4. Malektaj H, Nour S, Imani R, Siadati MH. Angiogenesis induction as a key step in cardiac tissue Regeneration: From angiogenic agents to biomaterials. Int J Pharm. 2023 Aug 25; 643: 123233. doi: 10.1016/j.ijpharm.2023.123233.
5. Watanabe T, Sassi S, Ulziibayar A, Hama R, Kitsuka T, Shinoka T. The Application of Porous Scaffolds for Cardiovascular Tissues. Bioengineering (Basel). 2023 Feb 10; 10 (2): 236. doi: 10.3390/bioengineering10020236.
6. Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol. 2023 Jan 10; 10: 1097334. doi: 10.3389/fbioe.2022.1097334.
7. Robotti F, Franco D, Bänninger L, Wyler J, Starck CT, Falk V et al. The influence of surface micro-structure on endothelialization under supraphysiological wall shear stress. Biomaterials. 2014 Oct; 35 (30): 8479–8486. doi: 10.1016/j.biomaterials.2014.06.046.
8. Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater. 2021 Feb 6; 6 (8): 2557–2568. doi: 10.1016/j.bioactmat.2020.12.021.
9. Kojima T, Nakamura T, Saito J, Hidaka Yu, Akimoto T, Inoue H et al. Hydrostatic pressure under hypoxia facilitates fabrication of tissue-engineered vascular grafts derived from human vascular smooth muscle cells in vitro. Acta Biomater. 2023 Nov; 171: 209–222. doi: 10.1016/j.actbio.2023.09.041.
10. Stowell CET, Wang Ya. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials. 2018 Aug; 173: 71–86. doi: 10.1016/j.biomaterials.2018.05.006.
11. Tang Y, Yin L, Gao S, Long X, Du Z, Zhou Y et al. Asmalldiameter vascular graft immobilized peptides for capturing endothelial colony-forming cells. Front Bioeng Biotechnol. 2023 Apr 10; 11: 1154986. doi: 10.3389/fbioe.2023.1154986.
12. Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of Electrospinning for Tissue Engineering Applications. Polymers (Basel). 2023 May 23; 15 (11): 2418. doi: 10.3390/polym15112418.
13. Kim JY, Kim JI, Park CH, Kim CS. Design of a modified electrospinning for the in-situ fabrication of 3D cottonlike collagen fiber bundle mimetic scaffold. Materials Letters. 2019 Feb 1; 236: 521–525. doi: 10.1016/j.matlet.2018.10.087.
14. Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules. 2023 Sep 14; 13 (9): 1389. doi: 10.3390/biom13091389.
15. Xie X, Wu Q, Liu Y, Chen C, Chen Z, Xie C et al. Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized smalldiameter vascular grafts by modulating the local inflammatory response. Front Bioeng Biotechnol. 2022 Dec 20; 10: 1066266. doi: 10.3389/fbioe.2022.1066266.
16. Prikaz Ministerstva zdravookhraneniya Rossiyskoy Federatsii ot 6 iyunya 2012 g. № 4n, g. Moskva «Ob utverzhdenii nomenklaturnoy klassifikatsii meditsinskikh izdeliy». Registratsionnyy № 24852. Zaregistrirovan v Minyuste RF 9 iyulya 2012 g. Data podpisaniya: 06.06.2012. Opublikovan: 23.10.2012. Vstupaet v silu: 04.11.2012.
17. ThanigaimaniS,KichenadasseG,MangoniAA. The emerging role of vascular endothelial growth factor (VEGF) in vascular homeostasis: Lessons from recent trials with anti-VEGF drugs. Curr Vasc Pharmacol. 2011 May; 9 (3): 358–380. doi: 10.2174/157016111795495503.
18. Yang X, Liaw L, Prudovsky I, Brooks PC, Vary C, Oxburgh L, Friesel R. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep. 2015 Jun; 17 (6): 509. doi: 10.1007/s11883-015-0509-6.
19. Salcedo R, Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation. 2003 Jun; 10 (3–4): 359–370. doi: 10.1038/sj.mn.7800200.
20. Schober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol. 2008 Nov; 28 (11): 1950–1959. doi: 10.1161/ATVBAHA.107.161224.
21. Zhu M, Wu Y, Li W, Dong X, Chang H, Wang K et al. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials. 2018 Nov; 183: 306–318. doi: 10.1016/j.biomaterials.2018.08.063.
22. Wu P, Wang L, Li W, Zhang Y, Wu Y, Zhi D et al. Construction of vascular graft with circumferentially oriented microchannels for improving artery regeneration. Biomaterials. 2020 Mar 4; 242: 119922. doi: 10.1016/j.biomaterials.2020.119922.
23. Navarro RS, Jiang L, Ouyang Y, Luo J, Liu Z, Yang Y et al. Biomimetic tubular scaffold with heparin conjugation for rapid degradation in in situ regeneration of a small diameter neoartery. Biomaterials. 2021 Jul; 274: 120874. doi: 10.1016/j.biomaterials.2021.120874.
24. Antonova LV, Sevostyanova VV, Mironov AV, Krivkina EO, Velikanova EA, Matveeva VG et al. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases. 2018; 7 (2): 25–36. (In Russ.). doi: 10.17802/2306-1278-2018-7-2-25-36.
25. Antonova L, Kutikhin A, Sevostianova V, Velikanova E, Matveeva V, Glushkova T et al. bFGF and SDF-1α Improve In Vivo Performance of VEGF-Incorporating Small-Diameter Vascular Grafts. Pharmaceuticals (Basel). 2021 Mar 28; 4 (4): 302. doi: 10.3390/ph14040302.
26. Antonova LV, Barbarash OL, Barbarash LS. Tissue-Engineered Constructions for the Needs of Cardiovascular Surgery: Possibilities of Personalization and Prospects for Use (Problem Article). Annals of the Russian Academy of Medical Sciences. 2023; 78 (2): 141–150. [In Russ, English abstract]. doi: 10.15690/vramn7578.
27. Hao D, Fan Y, Xiao W, Liu R, Pivetti C, Walimbe T et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. 2020 May; 108: 178–193. doi: 10.1016/j.actbio.2020.03.005.
28. Liu RH, Ong CS, Fukunishi T, Ong K, Hibino N. Review of vascular graft studies in large animal models. Tissue Eng Part B Rev. 2018 Apr; 24 (2): 133–143. doi: 10.1089/ten.TEB.2017.0350.
29. Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013 Oct; 24 (5): 916–925. doi: 10.1016/j.copbio.2013.05.005.
30. Thomas LV, Lekshmi V, Nair PD. Tissue engineered vascular grafts – preclinical aspects. Int J Cardiol. 2013 Aug 20; 167 (4): 1091–1100. doi: 10.1016/j.ijcard.2012.09.069.
31. Patent № 2702239 RF. Tekhnologiya izgotovleniya funktsional’no aktivnykh biodegradiruemykh sosudistykh protezov malogo diametra s lekarstvennym pokrytiem / Antonova L.V., Sevost’yanova V.V., Rezvova M.A., Krivkina E.O., Kudryavtseva Yu.A., Barbarash O.L., Barbarash L.S.; zayavitel’ i pravoobladatel’ Federal’noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Nauch.-issled. in-t kompleksnykh problem serdechno-sosudistykh zabolevaniy» – № 2019119912; zayavl. 25.06.2019; zaregistr. 07.10.2019. – 1 s.
32. Gruzdeva OV, Bychkova EE, Penskaya TYu, Kuzmina AA, Antonova LV, Barbarash LS. Сomparative Analysis of the Hemostasiological Profile in Sheep and Patients with Cardiovascular Pathology as the Basis for Predicting Thrombotic Risks During Preclinical Tests of Vascular Prostheses. Sovremennye tehnologii v medici¬ ne. 2021; 13 (1): 52–58. [In Russ, English abstract]. doi: 10.17691/stm2021.13.1.06.
33. Antonova LV, Krivkina EO, Khanova MYu, Velikanova EA, Matveeva VG, Mironov АV et al. Results of preclinical trials in a sheep model of biodegradable small-diameter vascular grafts. Russian Journal of Transplantology and Artificial Organs. 2022; 24 (3): 80–93. [In Russ, English abstract]. doi: 10.15825/1995-1191-2022-3-80-93.
34. Antonova LV, Mironov AV, Yuzhalin AE, Krivkina EO, Shabaev AR, Rezvova MA et al. A brief report on an implantation of small-caliber biodegradable vascular grafts in a carotid artery of the sheep. Pharmaceuticals (Basel). 2020 May 21; 13 (5): 101. doi: 10.3390/ph13050101.
35. Antonova LV, Krivkina EO, Sevostianova VV, Mironov AV, Rezvova MA, Shabaev AR et al. Tissue-engineered carotid artery interposition grafts demonstrate high primary patency and promote vascular tissue regeneration in the ovine model. Polymers (Basel). 2021 Aug 8; 13 (16): 2637. doi: 10.3390/polym13162637.
36. Wang C, Li Z, Zhang L, Sun W, Zhou J. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020 Nov; 85: 1–6. doi: 10.1016/j.medengphy.2020.09.007.
37. Matsuzaki Yu, Iwaki R, Reinhardt JW, Chang Yu-C, Miyamoto S, Kelly J et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissueengineered arterial grafts in a large animal model. Acta Biomater. 2020 Oct 1; 115: 176–184. doi: 10.1016/j.actbio.2020.08.011.
38. Ono M,Kageyama S, O’LearyN, El-Kurdi MS, Reinöhl J, Solien E et al. 1-Year Patency of Biorestorative Polymeric Coronary Artery Bypass Grafts in an Ovine Model. JACC Basic Transl Sci. 2023 Nov 9; 8 (1): 19–34. doi: 10.1016/j.jacbts.2022.06.021.
39. Dyl L, Topol M. The femoral artery and its branches in the baboon Papio Anubis. Folia Morphol (Warsz). 2007 Nov; 66 (4): 291–295.
40. Chai D, Cuneo S, Falconer H, Mwenda JM, D’Hooghe T. Olive baboon (Papio anubis anubis) as a model for intrauterine research. J Med Primatol. 2007 Dec; 36 (6): 365–369. doi: 10.1111/j.1600-0684.2006.00204.x.
Supplementary files
Review
For citations:
Antonova L.V., Senokosova E.A., Mironov A.V., Shabaev A.R., Sardin E.S., Matveeva V.G., Krivkina E.O., Khanova M.Yu., Torgunakova E.A. Preclinical evaluation of tissue-engineered vascular grafts with biodegradable components: assessing the effectiveness of animal models from rats to primates. Russian Journal of Transplantology and Artificial Organs. 2025;27(2):127-138. (In Russ.) https://doi.org/10.15825/1995-1191-2025-2-127-138